使用脑电图和音频信号进行多模态语音识别:增强 ASR 系统的新方法

Q2 Health Professions Smart Health Pub Date : 2024-04-03 DOI:10.1016/j.smhl.2024.100477
Anarghya Das , Puru Soni , Ming-Chun Huang , Feng Lin , Wenyao Xu
{"title":"使用脑电图和音频信号进行多模态语音识别:增强 ASR 系统的新方法","authors":"Anarghya Das ,&nbsp;Puru Soni ,&nbsp;Ming-Chun Huang ,&nbsp;Feng Lin ,&nbsp;Wenyao Xu","doi":"10.1016/j.smhl.2024.100477","DOIUrl":null,"url":null,"abstract":"<div><p>Speech recognition using EEG signals captured during covert (imagined) speech has garnered substantial interest in Brain–Computer Interface (BCI) research. While the concept holds promise, current implementations must improve performance compared to established Automatic Speech Recognition (ASR) methods using audio. An area often underestimated in previous studies is the potential of EEG utilization during overt speech. Integrating overt EEG signals with speech data by leveraging advancements in deep learning presents significant potential to enhance the efficacy of these systems. This integration proves particularly advantageous in noisy environments and for individuals with speech impairments—challenges even conventional ASR techniques struggle to address effectively. Our investigation delves into this relationship by introducing a novel multimodal model that merges EEG and speech inputs. Our model achieves a multiclass classification accuracy of 95.39%. When subjected to artificial white noise added to the input audio, our model exhibits a notable level of resilience, surpassing the capabilities of models reliant solely on single EEG or audio modalities. The validation process, leveraging the robust techniques of t-SNE and silhouette coefficient, corroborates and solidifies these advancements.</p></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"32 ","pages":"Article 100477"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal speech recognition using EEG and audio signals: A novel approach for enhancing ASR systems\",\"authors\":\"Anarghya Das ,&nbsp;Puru Soni ,&nbsp;Ming-Chun Huang ,&nbsp;Feng Lin ,&nbsp;Wenyao Xu\",\"doi\":\"10.1016/j.smhl.2024.100477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Speech recognition using EEG signals captured during covert (imagined) speech has garnered substantial interest in Brain–Computer Interface (BCI) research. While the concept holds promise, current implementations must improve performance compared to established Automatic Speech Recognition (ASR) methods using audio. An area often underestimated in previous studies is the potential of EEG utilization during overt speech. Integrating overt EEG signals with speech data by leveraging advancements in deep learning presents significant potential to enhance the efficacy of these systems. This integration proves particularly advantageous in noisy environments and for individuals with speech impairments—challenges even conventional ASR techniques struggle to address effectively. Our investigation delves into this relationship by introducing a novel multimodal model that merges EEG and speech inputs. Our model achieves a multiclass classification accuracy of 95.39%. When subjected to artificial white noise added to the input audio, our model exhibits a notable level of resilience, surpassing the capabilities of models reliant solely on single EEG or audio modalities. The validation process, leveraging the robust techniques of t-SNE and silhouette coefficient, corroborates and solidifies these advancements.</p></div>\",\"PeriodicalId\":37151,\"journal\":{\"name\":\"Smart Health\",\"volume\":\"32 \",\"pages\":\"Article 100477\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352648324000333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648324000333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

摘要

利用隐蔽(想象)说话时捕获的脑电信号进行语音识别已引起脑机接口(BCI)研究的极大兴趣。虽然这一概念前景广阔,但与使用音频的成熟自动语音识别 (ASR) 方法相比,目前的实现方法必须提高性能。在以往的研究中,经常被低估的一个领域是在公开讲话时利用脑电图的潜力。通过利用深度学习的进步,将公开的脑电信号与语音数据整合在一起,为提高这些系统的功效提供了巨大的潜力。事实证明,这种整合在嘈杂的环境中和对有语音障碍的人尤其有利--即使是传统的 ASR 技术也难以有效解决这些挑战。我们的研究通过引入一种融合脑电图和语音输入的新型多模态模型来深入探讨这种关系。我们的模型达到了 95.39% 的多类分类准确率。在输入音频中添加人工白噪声时,我们的模型表现出显著的适应能力,超越了仅依赖单一脑电图或音频模式的模型。利用 t-SNE 和剪影系数的稳健技术进行的验证过程证实并巩固了这些进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodal speech recognition using EEG and audio signals: A novel approach for enhancing ASR systems

Speech recognition using EEG signals captured during covert (imagined) speech has garnered substantial interest in Brain–Computer Interface (BCI) research. While the concept holds promise, current implementations must improve performance compared to established Automatic Speech Recognition (ASR) methods using audio. An area often underestimated in previous studies is the potential of EEG utilization during overt speech. Integrating overt EEG signals with speech data by leveraging advancements in deep learning presents significant potential to enhance the efficacy of these systems. This integration proves particularly advantageous in noisy environments and for individuals with speech impairments—challenges even conventional ASR techniques struggle to address effectively. Our investigation delves into this relationship by introducing a novel multimodal model that merges EEG and speech inputs. Our model achieves a multiclass classification accuracy of 95.39%. When subjected to artificial white noise added to the input audio, our model exhibits a notable level of resilience, surpassing the capabilities of models reliant solely on single EEG or audio modalities. The validation process, leveraging the robust techniques of t-SNE and silhouette coefficient, corroborates and solidifies these advancements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
期刊最新文献
Editorial Board Smart health practices: Strategies to improve healthcare efficiency through digital twin technology Human knowledge-based artificial intelligence methods for skin cancer management: Accuracy and interpretability study SAFE: Sound Analysis for Fall Event detection using machine learning Latent Space Representation of Adversarial AutoEncoder for Human Activity Recognition: Application to a low-cost commercial force plate and inertial measurement units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1