Bolin Li , Zhongwu Li , Jia Chen , Changsheng Jin , Weicheng Cao , Bo Peng
{"title":"溶解有机物中的类腐殖质成分抑制沉积物对镉的固碳作用","authors":"Bolin Li , Zhongwu Li , Jia Chen , Changsheng Jin , Weicheng Cao , Bo Peng","doi":"10.1016/j.jes.2024.03.055","DOIUrl":null,"url":null,"abstract":"<div><p>China's lakes are plagued by cadmium (Cd) pollution. Dissolved organic matter (DOM) significantly regulates Cd(II) transport properties at the sediment-water interface. Understanding the effects of different DOM components on the transportation properties of Cd(II) at the sediment-water interface is essential. In this study, typical DOM from different sources was selected to study Cd(II) mobility at the sediment-water interface. Results showed that terrestrial-derived DOM (fulvic acids, FA) and autochthonous-derived DOM (α-amylase, B1) inhibit Cd(II) sequestration by sediments (42.5% and 5.8%, respectively), while anthropogenic-derived DOM (sodium dodecyl benzene sulfonate, SDBS) increased the Cd(II) adsorption capacity by sediments by 2.8%. Fluorescence quenching coupling with parallel factor analysis (EEM-PARAFAC) was used to characterize different DOM components. The results showed that FA contains three kinds of components (C1, C3: protein-like components, C2: humic-like components); SDBS contains two kinds of components (C1, C2: protein-like components); B1 contains three kinds of components (C1, C2: protein-like components, C3: humic-like components).Three complex reaction models were used to characterize the ability of Cd(II) complex with DOM, and it was found that the humic-like component could hardly be complex with Cd(II). Accordingly, humic-like components compete for Cd(II) adsorption sites on the sediment surface and inhibit Cd(II) adsorption from sediments. Fourier transform infrared spectroscopy (FTIR) of the sediment surface before and after Cd(II) addition was analyzed and proved the competitive adsorption theory. This study provides a better understanding of the Cd(II) mobilization behavior at the sediment-water interface and indicates that the input of humic-like DOM will increase the bioavailability of Cd.</p></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"150 ","pages":"Pages 645-656"},"PeriodicalIF":5.9000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Humic-like components in dissolved organic matter inhibit cadmium sequestration by sediment\",\"authors\":\"Bolin Li , Zhongwu Li , Jia Chen , Changsheng Jin , Weicheng Cao , Bo Peng\",\"doi\":\"10.1016/j.jes.2024.03.055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>China's lakes are plagued by cadmium (Cd) pollution. Dissolved organic matter (DOM) significantly regulates Cd(II) transport properties at the sediment-water interface. Understanding the effects of different DOM components on the transportation properties of Cd(II) at the sediment-water interface is essential. In this study, typical DOM from different sources was selected to study Cd(II) mobility at the sediment-water interface. Results showed that terrestrial-derived DOM (fulvic acids, FA) and autochthonous-derived DOM (α-amylase, B1) inhibit Cd(II) sequestration by sediments (42.5% and 5.8%, respectively), while anthropogenic-derived DOM (sodium dodecyl benzene sulfonate, SDBS) increased the Cd(II) adsorption capacity by sediments by 2.8%. Fluorescence quenching coupling with parallel factor analysis (EEM-PARAFAC) was used to characterize different DOM components. The results showed that FA contains three kinds of components (C1, C3: protein-like components, C2: humic-like components); SDBS contains two kinds of components (C1, C2: protein-like components); B1 contains three kinds of components (C1, C2: protein-like components, C3: humic-like components).Three complex reaction models were used to characterize the ability of Cd(II) complex with DOM, and it was found that the humic-like component could hardly be complex with Cd(II). Accordingly, humic-like components compete for Cd(II) adsorption sites on the sediment surface and inhibit Cd(II) adsorption from sediments. Fourier transform infrared spectroscopy (FTIR) of the sediment surface before and after Cd(II) addition was analyzed and proved the competitive adsorption theory. This study provides a better understanding of the Cd(II) mobilization behavior at the sediment-water interface and indicates that the input of humic-like DOM will increase the bioavailability of Cd.</p></div>\",\"PeriodicalId\":15788,\"journal\":{\"name\":\"Journal of Environmental Sciences-china\",\"volume\":\"150 \",\"pages\":\"Pages 645-656\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Sciences-china\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074224001773\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224001773","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
中国的湖泊深受镉(Cd)污染的困扰。溶解有机物(DOM)对镉(II)在沉积物-水界面的迁移特性有重要影响。了解不同溶解有机物成分对镉(II)在沉积物-水界面迁移特性的影响至关重要。本研究选择了不同来源的典型 DOM 来研究镉(II)在沉积物-水界面的迁移性。结果表明,陆生来源的 DOM(富里酸,FA)和自生来源的 DOM(α-淀粉酶,B1)会抑制沉积物对 Cd(II)的固着(分别为 42.5% 和 5.8%),而人为来源的 DOM(十二烷基苯磺酸钠,SDBS)会增加沉积物对 Cd(II)的吸附能力,增幅为 2.8%。荧光淬灭耦合平行因子分析(EEM-PARAFAC)用于描述不同 DOM 成分的特征。结果表明,FA含有3种成分(C1、C3:类蛋白成分,C2:腐殖质成分);SDBS含有2种成分(C1、C2:类蛋白成分);B1含有3种成分(C1、C2:类蛋白成分,C3:腐殖质成分)。因此,类腐殖质成分会竞争沉积物表面的镉(II)吸附位点,抑制沉积物对镉(II)的吸附。对添加 Cd(II) 前后沉积物表面的傅立叶变换红外光谱(FTIR)进行了分析,证明了竞争吸附理论。这项研究有助于更好地理解镉(II)在沉积物-水界面的迁移行为,并表明腐殖质类 DOM 的加入会增加镉的生物利用率。
Humic-like components in dissolved organic matter inhibit cadmium sequestration by sediment
China's lakes are plagued by cadmium (Cd) pollution. Dissolved organic matter (DOM) significantly regulates Cd(II) transport properties at the sediment-water interface. Understanding the effects of different DOM components on the transportation properties of Cd(II) at the sediment-water interface is essential. In this study, typical DOM from different sources was selected to study Cd(II) mobility at the sediment-water interface. Results showed that terrestrial-derived DOM (fulvic acids, FA) and autochthonous-derived DOM (α-amylase, B1) inhibit Cd(II) sequestration by sediments (42.5% and 5.8%, respectively), while anthropogenic-derived DOM (sodium dodecyl benzene sulfonate, SDBS) increased the Cd(II) adsorption capacity by sediments by 2.8%. Fluorescence quenching coupling with parallel factor analysis (EEM-PARAFAC) was used to characterize different DOM components. The results showed that FA contains three kinds of components (C1, C3: protein-like components, C2: humic-like components); SDBS contains two kinds of components (C1, C2: protein-like components); B1 contains three kinds of components (C1, C2: protein-like components, C3: humic-like components).Three complex reaction models were used to characterize the ability of Cd(II) complex with DOM, and it was found that the humic-like component could hardly be complex with Cd(II). Accordingly, humic-like components compete for Cd(II) adsorption sites on the sediment surface and inhibit Cd(II) adsorption from sediments. Fourier transform infrared spectroscopy (FTIR) of the sediment surface before and after Cd(II) addition was analyzed and proved the competitive adsorption theory. This study provides a better understanding of the Cd(II) mobilization behavior at the sediment-water interface and indicates that the input of humic-like DOM will increase the bioavailability of Cd.
期刊介绍:
The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.