Sam van der Jagt , Neha Patankar , Jesse D. Jenkins
{"title":"了解需求汇在低碳电力系统中的作用和设计空间","authors":"Sam van der Jagt , Neha Patankar , Jesse D. Jenkins","doi":"10.1016/j.egycc.2024.100132","DOIUrl":null,"url":null,"abstract":"<div><p>As the availability of weather-dependent, zero marginal cost resources such as wind and solar power increases, a variety of flexible electricity loads, or ‘demand sinks’, could be deployed to use intermittently available low-cost electricity to produce valuable outputs. This study provides a general framework to evaluate any potential demand sink technology and understand its viability to be deployed cost-effectively in low-carbon power systems. We use an electricity system optimization model to assess 98 discrete combinations of capital costs and output values that collectively span the range of feasible characteristics of potential demand sink technologies. We find that candidates like hydrogen electrolysis, direct air capture, and flexible electric heating can all achieve significant installed capacity (>10% of system peak load) if lower capital costs are reached in the future. Demand sink technologies significantly increase installed wind and solar capacity while not significantly affecting battery storage, firm generating capacity, or the average cost of electricity.</p></div>","PeriodicalId":72914,"journal":{"name":"Energy and climate change","volume":"5 ","pages":"Article 100132"},"PeriodicalIF":5.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the role and design space of demand sinks in low-carbon power systems\",\"authors\":\"Sam van der Jagt , Neha Patankar , Jesse D. Jenkins\",\"doi\":\"10.1016/j.egycc.2024.100132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the availability of weather-dependent, zero marginal cost resources such as wind and solar power increases, a variety of flexible electricity loads, or ‘demand sinks’, could be deployed to use intermittently available low-cost electricity to produce valuable outputs. This study provides a general framework to evaluate any potential demand sink technology and understand its viability to be deployed cost-effectively in low-carbon power systems. We use an electricity system optimization model to assess 98 discrete combinations of capital costs and output values that collectively span the range of feasible characteristics of potential demand sink technologies. We find that candidates like hydrogen electrolysis, direct air capture, and flexible electric heating can all achieve significant installed capacity (>10% of system peak load) if lower capital costs are reached in the future. Demand sink technologies significantly increase installed wind and solar capacity while not significantly affecting battery storage, firm generating capacity, or the average cost of electricity.</p></div>\",\"PeriodicalId\":72914,\"journal\":{\"name\":\"Energy and climate change\",\"volume\":\"5 \",\"pages\":\"Article 100132\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and climate change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666278724000084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and climate change","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666278724000084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Understanding the role and design space of demand sinks in low-carbon power systems
As the availability of weather-dependent, zero marginal cost resources such as wind and solar power increases, a variety of flexible electricity loads, or ‘demand sinks’, could be deployed to use intermittently available low-cost electricity to produce valuable outputs. This study provides a general framework to evaluate any potential demand sink technology and understand its viability to be deployed cost-effectively in low-carbon power systems. We use an electricity system optimization model to assess 98 discrete combinations of capital costs and output values that collectively span the range of feasible characteristics of potential demand sink technologies. We find that candidates like hydrogen electrolysis, direct air capture, and flexible electric heating can all achieve significant installed capacity (>10% of system peak load) if lower capital costs are reached in the future. Demand sink technologies significantly increase installed wind and solar capacity while not significantly affecting battery storage, firm generating capacity, or the average cost of electricity.