超图中路径的多色尺寸-拉姆齐数下限

IF 1 3区 数学 Q1 MATHEMATICS European Journal of Combinatorics Pub Date : 2024-04-12 DOI:10.1016/j.ejc.2024.103969
Deepak Bal , Louis DeBiasio , Allan Lo
{"title":"超图中路径的多色尺寸-拉姆齐数下限","authors":"Deepak Bal ,&nbsp;Louis DeBiasio ,&nbsp;Allan Lo","doi":"10.1016/j.ejc.2024.103969","DOIUrl":null,"url":null,"abstract":"<div><p>The <span><math><mi>r</mi></math></span>-color size-Ramsey number of a <span><math><mi>k</mi></math></span>-uniform hypergraph <span><math><mi>H</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum number of edges in a <span><math><mi>k</mi></math></span>-uniform hypergraph <span><math><mi>G</mi></math></span> such that for every <span><math><mi>r</mi></math></span>-coloring of the edges of <span><math><mi>G</mi></math></span> there exists a monochromatic copy of <span><math><mi>H</mi></math></span>. In the case of 2-uniform paths <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, it is known that <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>r</mi><mo>)</mo></mrow><mi>n</mi><mo>)</mo></mrow></mrow></math></span> with the best bounds essentially due to Krivelevich (2019). In a recent breakthrough result, Letzter et al. (2021) gave a linear upper bound on the <span><math><mi>r</mi></math></span>-color size-Ramsey number of the <span><math><mi>k</mi></math></span>-uniform tight path <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span>; i.e. <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. At about the same time, Winter (2023) gave the first non-trivial lower bounds on the 2-color size-Ramsey number of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span> for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>; i.e. <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>n</mi><mo>−</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>≥</mo><mfenced><mrow><msub><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></mfenced><mi>n</mi><mo>−</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span>.</p><p>We consider the problem of giving a lower bound on the <span><math><mi>r</mi></math></span>-color size-Ramsey number of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span> (for fixed <span><math><mi>k</mi></math></span> and growing <span><math><mi>r</mi></math></span>). Our main result is that <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msup><mi>n</mi><mo>)</mo></mrow></mrow></math></span> which generalizes the best known lower bound for graphs mentioned above. One of the key elements of our proof turns out to be an interesting result of its own. We prove that <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>k</mi><mo>+</mo><mi>m</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mn>1</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mi>k</mi></mrow></math></span>; that is, we determine the correct order of magnitude of the <span><math><mi>r</mi></math></span>-color size-Ramsey number of every sufficiently short tight path.</p><p>All of our results generalize to <span><math><mi>ℓ</mi></math></span>-overlapping <span><math><mi>k</mi></math></span>-uniform paths <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo></mrow></mrow></msubsup></math></span>. In particular we note that when <span><math><mrow><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, we have <span><math><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>r</mi><mo>)</mo></mrow><mi>n</mi><mo>)</mo></mrow></mrow></math></span> which essentially matches the best known bounds for graphs mentioned above. Additionally, in the case <span><math><mrow><mi>k</mi><mo>=</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>ℓ</mi><mo>=</mo><mn>2</mn></mrow></math></span>, and <span><math><mrow><mi>r</mi><mo>=</mo><mn>2</mn></mrow></math></span>, we give a more precise estimate which implies <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mn>28</mn></mrow><mrow><mn>9</mn></mrow></mfrac><mi>n</mi><mo>−</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, improving on the above-mentioned lower bound of Winter in the case <span><math><mrow><mi>k</mi><mo>=</mo><mn>3</mn></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000544/pdfft?md5=8ed971a8a16a37bfa808eabee4a3a84c&pid=1-s2.0-S0195669824000544-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A lower bound on the multicolor size-Ramsey numbers of paths in hypergraphs\",\"authors\":\"Deepak Bal ,&nbsp;Louis DeBiasio ,&nbsp;Allan Lo\",\"doi\":\"10.1016/j.ejc.2024.103969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <span><math><mi>r</mi></math></span>-color size-Ramsey number of a <span><math><mi>k</mi></math></span>-uniform hypergraph <span><math><mi>H</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum number of edges in a <span><math><mi>k</mi></math></span>-uniform hypergraph <span><math><mi>G</mi></math></span> such that for every <span><math><mi>r</mi></math></span>-coloring of the edges of <span><math><mi>G</mi></math></span> there exists a monochromatic copy of <span><math><mi>H</mi></math></span>. In the case of 2-uniform paths <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, it is known that <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>r</mi><mo>)</mo></mrow><mi>n</mi><mo>)</mo></mrow></mrow></math></span> with the best bounds essentially due to Krivelevich (2019). In a recent breakthrough result, Letzter et al. (2021) gave a linear upper bound on the <span><math><mi>r</mi></math></span>-color size-Ramsey number of the <span><math><mi>k</mi></math></span>-uniform tight path <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span>; i.e. <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. At about the same time, Winter (2023) gave the first non-trivial lower bounds on the 2-color size-Ramsey number of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span> for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>; i.e. <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>n</mi><mo>−</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>≥</mo><mfenced><mrow><msub><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></mfenced><mi>n</mi><mo>−</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span>.</p><p>We consider the problem of giving a lower bound on the <span><math><mi>r</mi></math></span>-color size-Ramsey number of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span> (for fixed <span><math><mi>k</mi></math></span> and growing <span><math><mi>r</mi></math></span>). Our main result is that <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msup><mi>n</mi><mo>)</mo></mrow></mrow></math></span> which generalizes the best known lower bound for graphs mentioned above. One of the key elements of our proof turns out to be an interesting result of its own. We prove that <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>k</mi><mo>+</mo><mi>m</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mn>1</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mi>k</mi></mrow></math></span>; that is, we determine the correct order of magnitude of the <span><math><mi>r</mi></math></span>-color size-Ramsey number of every sufficiently short tight path.</p><p>All of our results generalize to <span><math><mi>ℓ</mi></math></span>-overlapping <span><math><mi>k</mi></math></span>-uniform paths <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo></mrow></mrow></msubsup></math></span>. In particular we note that when <span><math><mrow><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, we have <span><math><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>r</mi><mo>)</mo></mrow><mi>n</mi><mo>)</mo></mrow></mrow></math></span> which essentially matches the best known bounds for graphs mentioned above. Additionally, in the case <span><math><mrow><mi>k</mi><mo>=</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>ℓ</mi><mo>=</mo><mn>2</mn></mrow></math></span>, and <span><math><mrow><mi>r</mi><mo>=</mo><mn>2</mn></mrow></math></span>, we give a more precise estimate which implies <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mn>28</mn></mrow><mrow><mn>9</mn></mrow></mfrac><mi>n</mi><mo>−</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, improving on the above-mentioned lower bound of Winter in the case <span><math><mrow><mi>k</mi><mo>=</mo><mn>3</mn></mrow></math></span>.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000544/pdfft?md5=8ed971a8a16a37bfa808eabee4a3a84c&pid=1-s2.0-S0195669824000544-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000544\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000544","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

k-uniform hypergraph H 的 r-color size-Ramsey number(用 Rˆr(H)表示)是 k-uniform hypergraph G 中最小的边数,对于 G 的边的每一个 r-coloring,都存在 H 的单色副本。在 2-uniform paths Pn 的情况下,已知 Ω(r2n)=Rˆr(Pn)=O((r2logr)n) ,最佳边界基本上是 Krivelevich(2019)提出的。在最近的一项突破性成果中,Letzter 等人(2021 年)给出了 k 条均匀紧密路径 Pn(k) 的 r 色大小-拉姆齐数的线性上界,即 Rˆr(Pn(k))=Or,k(n)。大约与此同时,Winter (2023) 首次给出了 k≥3 时 Pn(k) 的双色大小-拉姆齐数的非难下界;即 Rˆ2(Pn(3))≥83n-O(1) 和 k≥4 时 Rˆ2(Pn(k))≥log2(k+1)n-Ok(1) 。我们的主要结果是 Rˆr(Pn(k))=Ωk(rkn),它概括了上述已知图形下限。我们证明的关键要素之一是一个有趣的结果。我们证明,在所有 1≤m≤k 的情况下,Rˆr(Pk+m(k))=Θk(rm);也就是说,我们确定了每条足够短的紧密路径的 r 色大小-拉姆齐数的正确数量级。我们的所有结果都可以推广到 ℓ-overlapping k-uniform paths Pn(k,ℓ)。我们特别注意到,当 1≤ℓ≤k2 时,我们有 Ωk(r2n)=Rˆr(Pn(k,ℓ))=O((r2logr)n),这基本上与上述图的已知最佳边界相吻合。此外,在 k=3、ℓ=2 和 r=2 的情况下,我们给出了一个更精确的估计值,即 Rˆ2(Pn(3))≥289n-O(1),比上述 k=3 情况下的 Winter 下限有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A lower bound on the multicolor size-Ramsey numbers of paths in hypergraphs

The r-color size-Ramsey number of a k-uniform hypergraph H, denoted by Rˆr(H), is the minimum number of edges in a k-uniform hypergraph G such that for every r-coloring of the edges of G there exists a monochromatic copy of H. In the case of 2-uniform paths Pn, it is known that Ω(r2n)=Rˆr(Pn)=O((r2logr)n) with the best bounds essentially due to Krivelevich (2019). In a recent breakthrough result, Letzter et al. (2021) gave a linear upper bound on the r-color size-Ramsey number of the k-uniform tight path Pn(k); i.e. Rˆr(Pn(k))=Or,k(n). At about the same time, Winter (2023) gave the first non-trivial lower bounds on the 2-color size-Ramsey number of Pn(k) for k3; i.e. Rˆ2(Pn(3))83nO(1) and Rˆ2(Pn(k))log2(k+1)nOk(1) for k4.

We consider the problem of giving a lower bound on the r-color size-Ramsey number of Pn(k) (for fixed k and growing r). Our main result is that Rˆr(Pn(k))=Ωk(rkn) which generalizes the best known lower bound for graphs mentioned above. One of the key elements of our proof turns out to be an interesting result of its own. We prove that Rˆr(Pk+m(k))=Θk(rm) for all 1mk; that is, we determine the correct order of magnitude of the r-color size-Ramsey number of every sufficiently short tight path.

All of our results generalize to -overlapping k-uniform paths Pn(k,). In particular we note that when 1k2, we have Ωk(r2n)=Rˆr(Pn(k,))=O((r2logr)n) which essentially matches the best known bounds for graphs mentioned above. Additionally, in the case k=3, =2, and r=2, we give a more precise estimate which implies Rˆ2(Pn(3))289nO(1), improving on the above-mentioned lower bound of Winter in the case k=3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
期刊最新文献
A combinatorial PROP for bialgebras Signed Mahonian polynomials on derangements in classical Weyl groups Degree conditions for Ramsey goodness of paths Bounded unique representation bases for the integers On the faces of unigraphic 3-polytopes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1