Pub Date : 2026-01-12DOI: 10.1016/j.ejc.2025.104332
Per Alexandersson , Olivia Nabawanda
The -partition generating function is a quasisymmetric function obtained from a labeled poset. Recently, Liu and Weselcouch gave a formula for the coefficients of when expanded in the quasisymmetric power sum function basis. This formula generalizes the classical Murnaghan–Nakayama rule for Schur functions.
We extend this result to weighted -partitions and provide a short combinatorial proof, avoiding the Hopf algebra machinery used by Liu–Weselcouch.
{"title":"A weighted Murnaghan–Nakayama rule for (P,ω)-partitions","authors":"Per Alexandersson , Olivia Nabawanda","doi":"10.1016/j.ejc.2025.104332","DOIUrl":"10.1016/j.ejc.2025.104332","url":null,"abstract":"<div><div>The <span><math><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></math></span>-partition generating function <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is a quasisymmetric function obtained from a labeled poset. Recently, Liu and Weselcouch gave a formula for the coefficients of <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> when expanded in the quasisymmetric power sum function basis. This formula generalizes the classical Murnaghan–Nakayama rule for Schur functions.</div><div>We extend this result to <em>weighted</em> <span><math><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></math></span>-partitions and provide a short combinatorial proof, avoiding the Hopf algebra machinery used by Liu–Weselcouch.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"134 ","pages":"Article 104332"},"PeriodicalIF":0.9,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145978977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-09DOI: 10.1016/j.ejc.2025.104327
Nathan Bowler , Rudi Pendavingh
A hyperfield is stringent if is a singleton unless , for all . By a construction of Marc Krasner, each valued field gives rise to a stringent hyperfield. We show that if is a stringent skew hyperfield, then weak matroids over are strong matroids over . Also, we present vector axioms for matroids over stringent skew hyperfields which generalize the vector axioms for oriented matroids and valuated matroids.
{"title":"Perfect matroids over skew hyperfields","authors":"Nathan Bowler , Rudi Pendavingh","doi":"10.1016/j.ejc.2025.104327","DOIUrl":"10.1016/j.ejc.2025.104327","url":null,"abstract":"<div><div>A hyperfield <span><math><mi>H</mi></math></span> is <em>stringent</em> if <span><math><mrow><mi>a</mi><mo>⊞</mo><mi>b</mi></mrow></math></span> is a singleton unless <span><math><mrow><mi>a</mi><mo>=</mo><mo>−</mo><mi>b</mi></mrow></math></span>, for all <span><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>H</mi></mrow></math></span>. By a construction of Marc Krasner, each valued field gives rise to a stringent hyperfield. We show that if <span><math><mi>H</mi></math></span> is a stringent skew hyperfield, then weak matroids over <span><math><mi>H</mi></math></span> are strong matroids over <span><math><mi>H</mi></math></span>. Also, we present vector axioms for matroids over stringent skew hyperfields which generalize the vector axioms for oriented matroids and valuated matroids.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"134 ","pages":"Article 104327"},"PeriodicalIF":0.9,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-05DOI: 10.1016/j.ejc.2025.104328
Ting Su
Matroids over skew tracts provide an algebraic framework simultaneously generalizing the notions of linear subspaces, matroids, oriented matroids, phased matroids, and some other “matroids with extra structure”. A single-element extension of a matroid over a skew tract is a matroid over obtained from by adding one more element. Crapo characterized single-element extensions of ordinary matroids, and Las Vergnas characterized single-element extensions of oriented matroids, in terms of single-element extensions of their rank 2 contractions. The results of Crapo and Las Vergnas do not generalize to matroids over skew tracts, but we will show a necessary and sufficient condition on skew tracts, called Pathetic Cancellation, such that the result can generalize to weak matroids over skew tracts.
Stringent skew hyperfields are a special case of skew tracts which behave in many ways like skew fields. We find a characterization of single-element extensions of strong matroids over stringent skew hyperfields.
{"title":"Single-element extensions of matroids over skew tracts","authors":"Ting Su","doi":"10.1016/j.ejc.2025.104328","DOIUrl":"10.1016/j.ejc.2025.104328","url":null,"abstract":"<div><div>Matroids over skew tracts provide an algebraic framework simultaneously generalizing the notions of linear subspaces, matroids, oriented matroids, phased matroids, and some other “matroids with extra structure”. A single-element extension of a matroid <span><math><mi>M</mi></math></span> over a skew tract <span><math><mi>T</mi></math></span> is a matroid <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> over <span><math><mi>T</mi></math></span> obtained from <span><math><mi>M</mi></math></span> by adding one more element. Crapo characterized single-element extensions of ordinary matroids, and Las Vergnas characterized single-element extensions of oriented matroids, in terms of single-element extensions of their rank 2 contractions. The results of Crapo and Las Vergnas do not generalize to matroids over skew tracts, but we will show a necessary and sufficient condition on skew tracts, called Pathetic Cancellation, such that the result can generalize to weak matroids over skew tracts.</div><div>Stringent skew hyperfields are a special case of skew tracts which behave in many ways like skew fields. We find a characterization of single-element extensions of strong matroids over stringent skew hyperfields.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"134 ","pages":"Article 104328"},"PeriodicalIF":0.9,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145927941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-02DOI: 10.1016/j.ejc.2025.104329
Sergey Luchinin , Svetlana Puzynina , Michaël Rao
The problem of reconstructing words from their subwords involves determining the minimum amount of information needed, such as multisets of scattered subwords of a specific length or the frequency of scattered subwords from a given set, in order to uniquely identify a word. In this paper we show that a cyclic word on a binary alphabet can be reconstructed by its scattered subwords of length , and for each one can find two cyclic words of length which have the same set of scattered subwords of length .
{"title":"Recovery of cyclic words by their subwords","authors":"Sergey Luchinin , Svetlana Puzynina , Michaël Rao","doi":"10.1016/j.ejc.2025.104329","DOIUrl":"10.1016/j.ejc.2025.104329","url":null,"abstract":"<div><div>The problem of reconstructing words from their subwords involves determining the minimum amount of information needed, such as multisets of scattered subwords of a specific length or the frequency of scattered subwords from a given set, in order to uniquely identify a word. In this paper we show that a cyclic word on a binary alphabet can be reconstructed by its scattered subwords of length <span><math><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>n</mi><mo>+</mo><mn>4</mn></mrow></math></span>, and for each <span><math><mi>n</mi></math></span> one can find two cyclic words of length <span><math><mi>n</mi></math></span> which have the same set of scattered subwords of length <span><math><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>n</mi><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"134 ","pages":"Article 104329"},"PeriodicalIF":0.9,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145886335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-31DOI: 10.1016/j.ejc.2025.104331
Jian Wang , Jimeng Xiao
Let be the symmetric group on the set . A family is called intersecting if for every there exists some such that . Deza and Frankl proved that the largest intersecting family of permutations is the full star, that is, the collection of all permutations with a fixed position. The diversity of an intersecting family is defined as the minimum number of permutations in , whose deletion results in a star. In the present paper, by applying the spread approximation method developed recently by Kupavskii and Zakharov, we prove that for the diversity of an intersecting subfamily of is at most , which is best possible.
{"title":"A note on the maximum diversity of intersecting families in the symmetric group","authors":"Jian Wang , Jimeng Xiao","doi":"10.1016/j.ejc.2025.104331","DOIUrl":"10.1016/j.ejc.2025.104331","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the symmetric group on the set <span><math><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow><mo>≔</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></mrow></math></span>. A family <span><math><mrow><mi>F</mi><mo>⊂</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is called intersecting if for every <span><math><mrow><mi>σ</mi><mo>,</mo><mi>π</mi><mo>∈</mo><mi>F</mi></mrow></math></span> there exists some <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow></math></span> such that <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>=</mo><mi>π</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></mrow></math></span>. Deza and Frankl proved that the largest intersecting family of permutations is the full star, that is, the collection of all permutations with a fixed position. The diversity of an intersecting family <span><math><mi>F</mi></math></span> is defined as the minimum number of permutations in <span><math><mi>F</mi></math></span>, whose deletion results in a star. In the present paper, by applying the spread approximation method developed recently by Kupavskii and Zakharov, we prove that for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>500</mn></mrow></math></span> the diversity of an intersecting subfamily of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is at most <span><math><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow><mo>!</mo></mrow></math></span>, which is best possible.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"134 ","pages":"Article 104331"},"PeriodicalIF":0.9,"publicationDate":"2025-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145872451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-30DOI: 10.1016/j.ejc.2025.104324
Benjamin Móricz , Zoltán Lóránt Nagy
What is the maximum number of -term sums admitting rational values in -element sets of irrational numbers? We determine the maximum when or and also in case when we drop the condition on the number of summands. It turns out that the -term sum problem is equivalent to determine the maximum number of -term zero-sum subsequences in -element sequences of integers, which can be seen as a variant of the famous Erdős–Ginzburg–Ziv theorem.
{"title":"Maximizing the number of rational-value sums or zero-sums","authors":"Benjamin Móricz , Zoltán Lóránt Nagy","doi":"10.1016/j.ejc.2025.104324","DOIUrl":"10.1016/j.ejc.2025.104324","url":null,"abstract":"<div><div>What is the maximum number of <span><math><mi>r</mi></math></span>-term sums admitting rational values in <span><math><mi>n</mi></math></span>-element sets of irrational numbers? We determine the maximum when <span><math><mrow><mi>r</mi><mo><</mo><mn>4</mn></mrow></math></span> or <span><math><mrow><mi>r</mi><mo>≥</mo><mi>n</mi><mo>/</mo><mn>2</mn></mrow></math></span> and also in case when we drop the condition on the number of summands. It turns out that the <span><math><mi>r</mi></math></span>-term sum problem is equivalent to determine the maximum number of <span><math><mi>r</mi></math></span>-term zero-sum subsequences in <span><math><mi>n</mi></math></span>-element sequences of integers, which can be seen as a variant of the famous Erdős–Ginzburg–Ziv theorem.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"133 ","pages":"Article 104324"},"PeriodicalIF":0.9,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145884522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-27DOI: 10.1016/j.ejc.2025.104325
Kristopher Tapp
We study the minimum spanning tree distribution on the space of spanning trees of the -by- grid for large . We establish bounds on the decay rates of the probability of the most and the least probable spanning trees as , and we develop general tools for studying the decay rates of spanning tree families.
{"title":"On the minimum spanning tree distribution in grids","authors":"Kristopher Tapp","doi":"10.1016/j.ejc.2025.104325","DOIUrl":"10.1016/j.ejc.2025.104325","url":null,"abstract":"<div><div>We study the minimum spanning tree distribution on the space of spanning trees of the <span><math><mi>n</mi></math></span>-by-<span><math><mi>n</mi></math></span> grid for large <span><math><mi>n</mi></math></span>. We establish bounds on the decay rates of the probability of the most and the least probable spanning trees as <span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, and we develop general tools for studying the decay rates of spanning tree families.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"133 ","pages":"Article 104325"},"PeriodicalIF":0.9,"publicationDate":"2025-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145840442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-26DOI: 10.1016/j.ejc.2025.104323
Raphael Yuster
For a digraph , let be the maximum chromatic number of an acyclic subgraph of . For an -vertex digraph it is proved that where is the bipartite independence number of , i.e., the largest for which there are two disjoint -sets of vertices with no edge between them. This generalizes a result of Fox, Kwan and Sudakov, who proved this for the case (i.e., tournaments and semicomplete digraphs). Consequently, if , then which polynomially improves the folklore bound . As a corollary, with high probability, all orientations of the random -vertex graph with edge probability (in particular, constant , hence almost all -vertex graphs) satisfy . Our proof uses a theorem of Gallai and Milgram that together with several additional ideas, essentially reduces to the proof of Fox, Kwan and Sudakov.
{"title":"Acyclic subgraphs of digraphs with high chromatic number","authors":"Raphael Yuster","doi":"10.1016/j.ejc.2025.104323","DOIUrl":"10.1016/j.ejc.2025.104323","url":null,"abstract":"<div><div>For a digraph <span><math><mi>G</mi></math></span>, let <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the maximum chromatic number of an acyclic subgraph of <span><math><mi>G</mi></math></span>. For an <span><math><mi>n</mi></math></span>-vertex digraph <span><math><mi>G</mi></math></span> it is proved that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>9</mn><mo>−</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>14</mn><mo>/</mo><mn>9</mn></mrow></msup></mrow></math></span> where <span><math><mi>s</mi></math></span> is the bipartite independence number of <span><math><mi>G</mi></math></span>, i.e., the largest <span><math><mi>s</mi></math></span> for which there are two disjoint <span><math><mi>s</mi></math></span>-sets of vertices with no edge between them. This generalizes a result of Fox, Kwan and Sudakov, who proved this for the case <span><math><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow></math></span> (i.e., tournaments and semicomplete digraphs). Consequently, if <span><math><mrow><mi>s</mi><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></mrow></math></span>, then <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>9</mn><mo>−</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></mrow></math></span> which polynomially improves the folklore bound <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mo>−</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></mrow></math></span>. As a corollary, with high probability, all orientations of the random <span><math><mi>n</mi></math></span>-vertex graph with edge probability <span><math><mrow><mi>p</mi><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></mrow></math></span> (in particular, constant <span><math><mi>p</mi></math></span>, hence almost all <span><math><mi>n</mi></math></span>-vertex graphs) satisfy <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>9</mn><mo>−</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></mrow></math></span>. Our proof uses a theorem of Gallai and Milgram that together with several additional ideas, essentially reduces to the proof of Fox, Kwan and Sudakov.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"133 ","pages":"Article 104323"},"PeriodicalIF":0.9,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145840443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-22DOI: 10.1016/j.ejc.2025.104322
Huan Xiong, Lihong Yang
Simultaneous core partitions have been extensively studied over the past two decades. In 2013, Amdeberhan proposed several conjectures regarding the number, the average size, and the largest size of -core partitions with distinct parts. These conjectures were proved and generalized by Straub, Nath-Sellers, Zaleski-Zeilberger, Xiong, Paramonov, and many other mathematicians. In this paper, we introduce a natural self-conjugate partition analog of -core partitions with distinct parts and derive their number, average size, and largest size.
{"title":"A self-conjugate partition analog of (t,t+1)-core partitions with distinct parts","authors":"Huan Xiong, Lihong Yang","doi":"10.1016/j.ejc.2025.104322","DOIUrl":"10.1016/j.ejc.2025.104322","url":null,"abstract":"<div><div>Simultaneous core partitions have been extensively studied over the past two decades. In 2013, Amdeberhan proposed several conjectures regarding the number, the average size, and the largest size of <span><math><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-core partitions with distinct parts. These conjectures were proved and generalized by Straub, Nath-Sellers, Zaleski-Zeilberger, Xiong, Paramonov, and many other mathematicians. In this paper, we introduce a natural self-conjugate partition analog of <span><math><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-core partitions with distinct parts and derive their number, average size, and largest size.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"133 ","pages":"Article 104322"},"PeriodicalIF":0.9,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145840445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-22DOI: 10.1016/j.ejc.2025.104321
Álvaro Gutiérrez , Álvaro L. Martínez , Michał Szwej , Mark Wildon
We present a combinatorial proof of the -Pfaff–Saalschütz identity by a composition of explicit bijections, in which -binomial coefficients are interpreted as counting subspaces of -vector spaces. As a corollary, we obtain a new multiplication rule for quantum binomial coefficients and hence a new presentation of Lusztig’s integral form of the Cartan subalgebra of the quantum group .
{"title":"A new bijective proof of the q-Pfaff–Saalschütz identity with applications to quantum groups","authors":"Álvaro Gutiérrez , Álvaro L. Martínez , Michał Szwej , Mark Wildon","doi":"10.1016/j.ejc.2025.104321","DOIUrl":"10.1016/j.ejc.2025.104321","url":null,"abstract":"<div><div>We present a combinatorial proof of the <span><math><mi>q</mi></math></span>-Pfaff–Saalschütz identity by a composition of explicit bijections, in which <span><math><mi>q</mi></math></span>-binomial coefficients are interpreted as counting subspaces of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-vector spaces. As a corollary, we obtain a new multiplication rule for quantum binomial coefficients and hence a new presentation of Lusztig’s integral form <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>Z</mi><mrow><mo>[</mo><mi>q</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>]</mo></mrow></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> of the Cartan subalgebra of the quantum group <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"133 ","pages":"Article 104321"},"PeriodicalIF":0.9,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145840436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}