首页 > 最新文献

European Journal of Combinatorics最新文献

英文 中文
On the order of semiregular automorphisms of cubic vertex-transitive graphs 论立方顶点变换图的半圆自动形的阶数
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-11-26 DOI: 10.1016/j.ejc.2024.104091
Marco Barbieri , Valentina Grazian , Pablo Spiga
We prove that, if Γ is a finite connected cubic vertex-transitive graph, then either there exists a semiregular automorphism of Γ of order at least 6, or the number of vertices of Γ is bounded above by an absolute constant.
我们证明,如果 Γ 是一个有限连接的立方顶点传递图,那么要么存在阶数至少为 6 的 Γ 的半圆自动形,要么 Γ 的顶点数在上面以一个绝对常数为界。
{"title":"On the order of semiregular automorphisms of cubic vertex-transitive graphs","authors":"Marco Barbieri ,&nbsp;Valentina Grazian ,&nbsp;Pablo Spiga","doi":"10.1016/j.ejc.2024.104091","DOIUrl":"10.1016/j.ejc.2024.104091","url":null,"abstract":"<div><div>We prove that, if <span><math><mi>Γ</mi></math></span> is a finite connected cubic vertex-transitive graph, then either there exists a semiregular automorphism of <span><math><mi>Γ</mi></math></span> of order at least 6, or the number of vertices of <span><math><mi>Γ</mi></math></span> is bounded above by an absolute constant.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104091"},"PeriodicalIF":1.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
More on rainbow cliques in edge-colored graphs 边色图中彩虹小群的更多内容
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-11-25 DOI: 10.1016/j.ejc.2024.104088
Xiao-Chuan Liu , Danni Peng , Xu Yang
In an edge-colored graph G, a rainbow clique Kk is a complete subgraph on k vertices in which all the edges have distinct colors. Let e(G) and c(G) be the number of edges and colors in G, respectively. In this paper, we show that for any ɛ>0, if e(G)+c(G)(1+k3k2+2ɛ)n2 and k3, then for sufficiently large n, the number of rainbow cliques Kk in G is Ω(nk).
We also characterize the extremal graphs G without a rainbow clique Kk, for k=4,5, when e(G)+c(G) is maximum.
Our results not only address existing questions but also complete the findings of Ehard and Mohr (2020).
在边色图 G 中,彩虹簇 Kk 是 k 个顶点上的一个完整子图,其中所有的边都有不同的颜色。设 e(G) 和 c(G) 分别为 G 中的边数和颜色数。本文将证明,对于任意ɛ>0,如果 e(G)+c(G)≥(1+k-3k-2+2ɛ)n2 且 k≥3 ,那么对于足够大的 n,G 中彩虹小群 Kk 的数目为 Ω(nk)。我们还描述了在 k=4,5 时,e(G)+c(G) 最大时没有彩虹簇 Kk 的极值图 G 的特征。我们的结果不仅解决了现有问题,还完善了 Ehard 和 Mohr (2020) 的发现。
{"title":"More on rainbow cliques in edge-colored graphs","authors":"Xiao-Chuan Liu ,&nbsp;Danni Peng ,&nbsp;Xu Yang","doi":"10.1016/j.ejc.2024.104088","DOIUrl":"10.1016/j.ejc.2024.104088","url":null,"abstract":"<div><div>In an edge-colored graph <span><math><mi>G</mi></math></span>, a rainbow clique <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is a complete subgraph on <span><math><mi>k</mi></math></span> vertices in which all the edges have distinct colors. Let <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the number of edges and colors in <span><math><mi>G</mi></math></span>, respectively. In this paper, we show that for any <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, if <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>3</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mn>2</mn><mi>ɛ</mi><mo>)</mo></mrow><mfenced><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mfenced></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, then for sufficiently large <span><math><mi>n</mi></math></span>, the number of rainbow cliques <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> in <span><math><mi>G</mi></math></span> is <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</div><div>We also characterize the extremal graphs <span><math><mi>G</mi></math></span> without a rainbow clique <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, for <span><math><mrow><mi>k</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn></mrow></math></span>, when <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is maximum.</div><div>Our results not only address existing questions but also complete the findings of Ehard and Mohr (2020).</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104088"},"PeriodicalIF":1.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When (signless) Laplacian coefficients meet matchings of subdivision 当(无符号)拉普拉斯系数与细分匹配时
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-11-13 DOI: 10.1016/j.ejc.2024.104087
Zhibin Du
Let G be a graph, whose subdivision is denoted by S(G). Let ϕL(G,x) be the characteristic polynomial of the Laplacian matrix of G. In 1974, Kelmans and Chelnokov (1974) gave a graph theoretical interpretation for the coefficients of ϕL(G,x), in terms of the spanning forests of G. In this paper, we present another graph theoretical interpretation of the Laplacian coefficients by using the matching numbers of S(G), generalizing the cases of trees and unicyclic graphs, which were established by Zhou and Gutman (2008) and Chen and Yan (2021), respectively. Analogously, a graph theoretical interpretation of the signless Laplacian coefficients is also presented, whose previous graph theoretical interpretation is based on the so-called TU-subgraphs (the spanning subgraphs whose components are trees or odd-unicyclic graphs) due to Cvetković et al. (2007). Some formulas related to the number of spanning trees are also given.
设 G 是一个图,其细分图用 S(G) 表示。1974 年,Kelmans 和 Chelnokov(1974 年)用 G 的生成林给出了 ϕL(G,x) 系数的图论解释。在本文中,我们利用 S(G) 的匹配数提出了拉普拉奇系数的另一种图论解释,并推广了周和古特曼(2008 年)以及陈和严(2021 年)分别建立的树图和单环图的情况。与此类似,我们还提出了无符号拉普拉奇系数的图论解释,其先前的图论解释是基于 Cvetković 等人(2007 年)提出的所谓 TU 子图(其成分为树形或奇单环图的跨度子图)。此外,还给出了一些与生成树数量相关的公式。
{"title":"When (signless) Laplacian coefficients meet matchings of subdivision","authors":"Zhibin Du","doi":"10.1016/j.ejc.2024.104087","DOIUrl":"10.1016/j.ejc.2024.104087","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph, whose subdivision is denoted by <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Let <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> be the characteristic polynomial of the Laplacian matrix of <span><math><mi>G</mi></math></span>. In 1974, Kelmans and Chelnokov (1974) gave a graph theoretical interpretation for the coefficients of <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, in terms of the spanning forests of <span><math><mi>G</mi></math></span>. In this paper, we present another graph theoretical interpretation of the Laplacian coefficients by using the matching numbers of <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, generalizing the cases of trees and unicyclic graphs, which were established by Zhou and Gutman (2008) and Chen and Yan (2021), respectively. Analogously, a graph theoretical interpretation of the signless Laplacian coefficients is also presented, whose previous graph theoretical interpretation is based on the so-called TU-subgraphs (the spanning subgraphs whose components are trees or odd-unicyclic graphs) due to Cvetković et al. (2007). Some formulas related to the number of spanning trees are also given.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104087"},"PeriodicalIF":1.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Freehedra are short 自由面很短
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-11-12 DOI: 10.1016/j.ejc.2024.104084
Daria Poliakova
We prove the combinatorial property of shortness for freehedra. Note that associahedra, a related family of polytopes, are not short.
我们证明了自由曲面的组合短性。需要注意的是,相关联的多面体家族并不简短。
{"title":"Freehedra are short","authors":"Daria Poliakova","doi":"10.1016/j.ejc.2024.104084","DOIUrl":"10.1016/j.ejc.2024.104084","url":null,"abstract":"<div><div>We prove the combinatorial property of shortness for freehedra. Note that associahedra, a related family of polytopes, are not short.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104084"},"PeriodicalIF":1.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Erdős–Tuza–Valtr conjecture 关于厄尔多斯-图扎-瓦尔特猜想
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-11-08 DOI: 10.1016/j.ejc.2024.104085
Jineon Baek
The Erdős–Szekeres conjecture states that any set of more than 2n2 points in the plane with no three on a line contains the vertices of a convex n-gon. Erdős, Tuza, and Valtr strengthened the conjecture by stating that any set of more than i=nba2n2i points in a plane either contains the vertices of a convex n-gon, a points lying on a concave downward curve, or b points lying on a concave upward curve. They also showed that the generalization is actually equivalent to the Erdős–Szekeres conjecture. We prove the first new case of the Erdős–Tuza–Valtr conjecture since the original 1935 paper of Erdős and Szekeres. Namely, we show that any set of n12+2 points in the plane with no three points on a line and no two points sharing the same x-coordinate either contains 4 points lying on a concave downward curve or the vertices of a convex n-gon. The proof is also formalized in Lean 4, a computer proof assistance, to ensure the correctness of the proof.
厄尔多斯-塞克雷斯猜想指出,平面中任何超过 2n-2 个点的集合,只要没有三点在一条直线上,就包含一个凸 n 形的顶点。Erdős、Tuza 和 Valtr 强化了这一猜想,指出平面上任何超过 ∑i=n-ba-2n-2i 个点的集合要么包含凸 n 形的顶点,要么包含位于向下凹曲线上的 a 个点,要么包含位于向上凹曲线上的 b 个点。他们还证明了这一推广实际上等同于厄尔多斯-塞克斯猜想。我们证明了 Erdős-Tuza-Valtr 猜想自 Erdős 和 Szekeres 于 1935 年发表论文以来的第一个新案例。也就是说,我们证明了平面上任何 n-12+2 个点的集合,其中没有三个点在一条直线上,也没有两个点共享相同的 x 坐标,要么包含位于向下凹曲线上的 4 个点,要么包含凸 n 形的顶点。为了确保证明的正确性,还用 Lean 4 这一计算机证明辅助工具将证明形式化。
{"title":"On the Erdős–Tuza–Valtr conjecture","authors":"Jineon Baek","doi":"10.1016/j.ejc.2024.104085","DOIUrl":"10.1016/j.ejc.2024.104085","url":null,"abstract":"<div><div>The Erdős–Szekeres conjecture states that any set of more than <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></math></span> points in the plane with no three on a line contains the vertices of a convex <span><math><mi>n</mi></math></span>-gon. Erdős, Tuza, and Valtr strengthened the conjecture by stating that any set of more than <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mi>n</mi><mo>−</mo><mi>b</mi></mrow><mrow><mi>a</mi><mo>−</mo><mn>2</mn></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>i</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> points in a plane either contains the vertices of a convex <span><math><mi>n</mi></math></span>-gon, <span><math><mi>a</mi></math></span> points lying on a concave downward curve, or <span><math><mi>b</mi></math></span> points lying on a concave upward curve. They also showed that the generalization is actually equivalent to the Erdős–Szekeres conjecture. We prove the first new case of the Erdős–Tuza–Valtr conjecture since the original 1935 paper of Erdős and Szekeres. Namely, we show that any set of <span><math><mrow><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced><mo>+</mo><mn>2</mn></mrow></math></span> points in the plane with no three points on a line and no two points sharing the same <span><math><mi>x</mi></math></span>-coordinate either contains 4 points lying on a concave downward curve or the vertices of a convex <span><math><mi>n</mi></math></span>-gon. The proof is also formalized in <em>Lean 4</em>, a computer proof assistance, to ensure the correctness of the proof.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104085"},"PeriodicalIF":1.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A combinatorial PROP for bialgebras 双桥的组合 PROP
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-11-05 DOI: 10.1016/j.ejc.2024.104086
Jorge Becerra
It is a classical result that the category of finitely-generated free monoids serves as a PROP for commutative bialgebras. Attaching permutations to fix the order of multiplication, we construct an extension of this category that is equivalent to the PROP for bialgebras.
有限生成的自由单元范畴是交换双桥的 PROP,这是一个经典结果。通过附加排列来固定相乘的顺序,我们构建了这个范畴的一个扩展,它等同于双桥的 PROP。
{"title":"A combinatorial PROP for bialgebras","authors":"Jorge Becerra","doi":"10.1016/j.ejc.2024.104086","DOIUrl":"10.1016/j.ejc.2024.104086","url":null,"abstract":"<div><div>It is a classical result that the category of finitely-generated free monoids serves as a PROP for commutative bialgebras. Attaching permutations to fix the order of multiplication, we construct an extension of this category that is equivalent to the PROP for bialgebras.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104086"},"PeriodicalIF":1.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Signed Mahonian polynomials on derangements in classical Weyl groups 经典韦尔群出射上的有符号马洪多项式
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-11-04 DOI: 10.1016/j.ejc.2024.104083
Kathy Q. Ji , Dax T.X. Zhang
The polynomial of the major index majW(σ) over the subset T of the Coxeter group W is called the Mahonian polynomial over T, where majW(σ) is a Mahonian statistic of an element σT, whereas the polynomial of the major index majW(σ) with the sign (1)W(σ) over the subset T is referred to as the signed Mahonian polynomial over T, where W(σ) is the length of σT. Gessel, Wachs, and Chow established formulas for the Mahonian polynomials over the sets of derangements in the symmetric group Sn and the hyperoctahedral group Bn. By extending Wachs’ approach and employing a refinement of Stanley’s shuffle theorem established in our recent paper (Ji and Zhang, 2024), we derive a formula for the Mahonian polynomials over the set of derangements in the even-signed permutation group Dn. This completes a picture which is now known for all the classical Weyl groups. Gessel–Simion, Adin–Gessel–Roichman, and Biagioli previously established formulas for the signed Mahonian polynomials over the classical Weyl groups. Building upon their formulas, we derive some new formulas for the signed Mahonian polynomials over the set of derangements in classical Weyl groups. As applications of the formulas for the (signed) Mahonian polynomials over the sets of derangements in the classical Weyl groups, we obtain enumerative formulas of the number of derangements in classical Weyl groups with even lengths.
考斯特群 W 的子集 T 上的主要指数 majW(σ) 的多项式称为 T 上的马洪多项式,其中 majW(σ) 是元素 σ∈T 的马洪统计量、而子集 T 上符号为 (-1)ℓW(σ) 的主要指数 majW(σ) 的多项式称为 T 上的带符号马洪多项式,其中 ℓW(σ) 是 σ∈T 的长度。Gessel、Wachs 和 Chow 建立了对称群 Sn 和超八面体群 Bn 中衍生集上的马洪多项式公式。通过扩展 Wachs 的方法,并利用我们最近的论文(Ji and Zhang, 2024)中建立的斯坦利洗牌定理的改进,我们推导出了偶符号置换群 Dn 的导数集上的马洪多项式公式。这完善了现在已知的所有经典韦尔群的情况。格塞尔-西米昂、阿丁-格塞尔-罗伊克曼和比亚乔利之前建立了经典韦尔群上有符号马洪多项式的公式。在他们的公式基础上,我们推导出了经典韦尔群中导数集上有符号马洪多项式的一些新公式。作为经典韦尔群导数集上(有符号)马洪多项式公式的应用,我们得到了经典韦尔群中偶数长度导数的枚举公式。
{"title":"Signed Mahonian polynomials on derangements in classical Weyl groups","authors":"Kathy Q. Ji ,&nbsp;Dax T.X. Zhang","doi":"10.1016/j.ejc.2024.104083","DOIUrl":"10.1016/j.ejc.2024.104083","url":null,"abstract":"<div><div>The polynomial of the major index <span><math><mrow><msub><mrow><mi>maj</mi></mrow><mrow><mi>W</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> over the subset <span><math><mi>T</mi></math></span> of the Coxeter group <span><math><mi>W</mi></math></span> is called the Mahonian polynomial over <span><math><mi>T</mi></math></span>, where <span><math><mrow><msub><mrow><mi>maj</mi></mrow><mrow><mi>W</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> is a Mahonian statistic of an element <span><math><mrow><mi>σ</mi><mo>∈</mo><mi>T</mi></mrow></math></span>, whereas the polynomial of the major index <span><math><mrow><msub><mrow><mi>maj</mi></mrow><mrow><mi>W</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> with the sign <span><math><msup><mrow><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>W</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></msup></math></span> over the subset <span><math><mi>T</mi></math></span> is referred to as the signed Mahonian polynomial over <span><math><mi>T</mi></math></span>, where <span><math><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>W</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> is the length of <span><math><mrow><mi>σ</mi><mo>∈</mo><mi>T</mi></mrow></math></span>. Gessel, Wachs, and Chow established formulas for the Mahonian polynomials over the sets of derangements in the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the hyperoctahedral group <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. By extending Wachs’ approach and employing a refinement of Stanley’s shuffle theorem established in our recent paper (Ji and Zhang, 2024), we derive a formula for the Mahonian polynomials over the set of derangements in the even-signed permutation group <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. This completes a picture which is now known for all the classical Weyl groups. Gessel–Simion, Adin–Gessel–Roichman, and Biagioli previously established formulas for the signed Mahonian polynomials over the classical Weyl groups. Building upon their formulas, we derive some new formulas for the signed Mahonian polynomials over the set of derangements in classical Weyl groups. As applications of the formulas for the (signed) Mahonian polynomials over the sets of derangements in the classical Weyl groups, we obtain enumerative formulas of the number of derangements in classical Weyl groups with even lengths.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104083"},"PeriodicalIF":1.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degree conditions for Ramsey goodness of paths 拉姆齐良好路径的程度条件
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-10-18 DOI: 10.1016/j.ejc.2024.104082
Lucas Aragão , João Pedro Marciano , Walner Mendonça
A classical result of Chvátal implies that if n(r1)(t1)+1, then any colouring of the edges of Kn in red and blue contains either a monochromatic red Kr or a monochromatic blue Pt. We study a natural generalisation of his result, determining the exact minimum degree condition for a graph G on n=(r1)(t1)+1 vertices which guarantees that the same Ramsey property holds in G. In particular, using a slight generalisation of a result of Haxell, we show that δ(G)nt/2 suffices, and that this bound is best possible. We also use a classical result of Bollobás, Erdős, and Straus to prove a tight minimum degree condition in the case r=3 for all n2t1.
Chvátal 的一个经典结果意味着,如果 n≥(r-1)(t-1)+1,那么 Kn 的任何红蓝边着色都包含一个单色红色 Kr 或一个单色蓝色 Pt。我们研究了他的结果的自然推广,确定了 n=(r-1)(t-1)+1 个顶点上的图 G 的精确最小度条件,该条件保证了相同的拉姆齐性质在 G 中成立。特别是,利用哈克赛尔结果的轻微推广,我们证明δ(G)≥n-t/2 就足够了,而且这个约束是最好的。我们还利用 Bollobás、Erdős 和 Straus 的经典结果,证明了在 r=3 的情况下,所有 n≥2t-1 的最小度条件。
{"title":"Degree conditions for Ramsey goodness of paths","authors":"Lucas Aragão ,&nbsp;João Pedro Marciano ,&nbsp;Walner Mendonça","doi":"10.1016/j.ejc.2024.104082","DOIUrl":"10.1016/j.ejc.2024.104082","url":null,"abstract":"<div><div>A classical result of Chvátal implies that if <span><math><mrow><mi>n</mi><mo>≥</mo><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, then any colouring of the edges of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> in red and blue contains either a monochromatic red <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> or a monochromatic blue <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. We study a natural generalisation of his result, determining the exact minimum degree condition for a graph <span><math><mi>G</mi></math></span> on <span><math><mrow><mi>n</mi><mo>=</mo><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> vertices which guarantees that the same Ramsey property holds in <span><math><mi>G</mi></math></span>. In particular, using a slight generalisation of a result of Haxell, we show that <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mfenced><mrow><mi>t</mi><mo>/</mo><mn>2</mn></mrow></mfenced></mrow></math></span> suffices, and that this bound is best possible. We also use a classical result of Bollobás, Erdős, and Straus to prove a tight minimum degree condition in the case <span><math><mrow><mi>r</mi><mo>=</mo><mn>3</mn></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104082"},"PeriodicalIF":1.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the faces of unigraphic 3-polytopes 关于单图式 3 多面体的面
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-10-16 DOI: 10.1016/j.ejc.2024.104081
Riccardo W. Maffucci
A 3-polytope is a 3-connected, planar graph. It is called unigraphic if it does not share its vertex degree sequence with any other 3-polytope, up to graph isomorphism. The classification of unigraphic 3-polytopes appears to be a difficult problem.
In this paper we prove that, apart from pyramids, all unigraphic 3-polytopes have no n-gonal faces for n10. Our method involves defining several planar graph transformations on a given 3-polytope containing an n-gonal face with n10. The delicate part is to prove that, for every such 3-polytope, at least one of these transformations both preserves 3-connectivity, and is not an isomorphism.
3 多面体是一个 3 连接的平面图形。如果它的顶点度序列不与任何其他 3 多面体共享,直到图同构,那么它就被称为单图形。在本文中,我们证明了除金字塔外,所有单图形三多面体在 n≥10 时都没有 n 个球面。我们的方法是在一个给定的 3 多面体上定义几个平面图形变换,其中包含一个 n≥10 的 n 角面。最复杂的部分是证明,对于每一个这样的 3 多面体,这些变换中至少有一个既保留了 3 连通性,又不是同构。
{"title":"On the faces of unigraphic 3-polytopes","authors":"Riccardo W. Maffucci","doi":"10.1016/j.ejc.2024.104081","DOIUrl":"10.1016/j.ejc.2024.104081","url":null,"abstract":"<div><div>A 3-polytope is a 3-connected, planar graph. It is called unigraphic if it does not share its vertex degree sequence with any other 3-polytope, up to graph isomorphism. The classification of unigraphic 3-polytopes appears to be a difficult problem.</div><div>In this paper we prove that, apart from pyramids, all unigraphic 3-polytopes have no <span><math><mi>n</mi></math></span>-gonal faces for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>10</mn></mrow></math></span>. Our method involves defining several planar graph transformations on a given 3-polytope containing an <span><math><mi>n</mi></math></span>-gonal face with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>10</mn></mrow></math></span>. The delicate part is to prove that, for every such 3-polytope, at least one of these transformations both preserves 3-connectivity, and is not an isomorphism.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104081"},"PeriodicalIF":1.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounded unique representation bases for the integers 整数的有界唯一表示基
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-10-16 DOI: 10.1016/j.ejc.2024.104080
Yong-Gao Chen, Jin-Hui Fang
<div><div>For a nonempty set <span><math><mi>A</mi></math></span> of integers and an integer <span><math><mi>n</mi></math></span>, let <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of representations of <span><math><mrow><mi>n</mi><mo>=</mo><mi>a</mi><mo>+</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> with <span><math><mrow><mi>a</mi><mo>≤</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mi>a</mi><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>A</mi></mrow></math></span>, and let <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of representations of <span><math><mrow><mi>n</mi><mo>=</mo><mi>a</mi><mo>−</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> with <span><math><mrow><mi>a</mi><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>A</mi></mrow></math></span>. Erdős and Turán (1941) posed the profound conjecture: if <span><math><mi>A</mi></math></span> is a set of positive integers such that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></mrow></math></span> for all sufficiently large <span><math><mi>n</mi></math></span>, then <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is unbounded. Nešetřil and Serra (2004) introduced the notion of bounded sets and confirmed the Erdős–Turán conjecture for all bounded bases. Nathanson (2003) considered the existence of the set <span><math><mi>A</mi></math></span> with logarithmic growth such that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for all integers <span><math><mi>n</mi></math></span>. In this paper, we prove that, for any positive function <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>→</mo><mn>0</mn></mrow></math></span> as <span><math><mrow><mi>x</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, there is a bounded set <span><math><mi>A</mi></math></span> of integers such that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for all integers <span><math><mi>n</mi></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for all positi
对于非空整数集合 A 和整数 n,设 rA(n) 是 n=a+a′ 的表示数,其中 a≤a′ 和 a,a′∈A ;设 dA(n) 是 n=a-a′ 的表示数,其中 a,a′∈A 。厄尔多斯和图兰(1941)提出了一个深刻的猜想:如果 A 是一个正整数集合,对于所有足够大的 n,rA(n)≥1,那么 rA(n) 是无界的。Nešetřil 和 Serra (2004) 引入了有界集的概念,并证实了 Erdős-Turán 对所有有界基的猜想。Nathanson (2003) 考虑了具有对数增长的集合 A 的存在性,即对于所有整数 n,rA(n)=1。在本文中,我们证明了对于任何正函数 l(x),当 x→∞ 时,l(x)→0,存在一个有界的整数集合 A,使得对于所有整数 n,rA(n)=1;对于所有正整数 n,dA(n)=1;对于所有足够大的 x,A(-x,x)≥l(x)logx,其中 A(-x,x) 是具有 -x≤a≤x 的元素 a∈A 的个数。
{"title":"Bounded unique representation bases for the integers","authors":"Yong-Gao Chen,&nbsp;Jin-Hui Fang","doi":"10.1016/j.ejc.2024.104080","DOIUrl":"10.1016/j.ejc.2024.104080","url":null,"abstract":"&lt;div&gt;&lt;div&gt;For a nonempty set &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of integers and an integer &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be the number of representations of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be the number of representations of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Erdős and Turán (1941) posed the profound conjecture: if &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a set of positive integers such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all sufficiently large &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is unbounded. Nešetřil and Serra (2004) introduced the notion of bounded sets and confirmed the Erdős–Turán conjecture for all bounded bases. Nathanson (2003) considered the existence of the set &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with logarithmic growth such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all integers &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. In this paper, we prove that, for any positive function &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, there is a bounded set &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of integers such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all integers &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all positi","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104080"},"PeriodicalIF":1.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Journal of Combinatorics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1