Pub Date : 2024-11-26DOI: 10.1016/j.ejc.2024.104091
Marco Barbieri , Valentina Grazian , Pablo Spiga
We prove that, if is a finite connected cubic vertex-transitive graph, then either there exists a semiregular automorphism of of order at least 6, or the number of vertices of is bounded above by an absolute constant.
{"title":"On the order of semiregular automorphisms of cubic vertex-transitive graphs","authors":"Marco Barbieri , Valentina Grazian , Pablo Spiga","doi":"10.1016/j.ejc.2024.104091","DOIUrl":"10.1016/j.ejc.2024.104091","url":null,"abstract":"<div><div>We prove that, if <span><math><mi>Γ</mi></math></span> is a finite connected cubic vertex-transitive graph, then either there exists a semiregular automorphism of <span><math><mi>Γ</mi></math></span> of order at least 6, or the number of vertices of <span><math><mi>Γ</mi></math></span> is bounded above by an absolute constant.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104091"},"PeriodicalIF":1.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1016/j.ejc.2024.104088
Xiao-Chuan Liu , Danni Peng , Xu Yang
In an edge-colored graph , a rainbow clique is a complete subgraph on vertices in which all the edges have distinct colors. Let and be the number of edges and colors in , respectively. In this paper, we show that for any , if and , then for sufficiently large , the number of rainbow cliques in is .
We also characterize the extremal graphs without a rainbow clique , for , when is maximum.
Our results not only address existing questions but also complete the findings of Ehard and Mohr (2020).
在边色图 G 中,彩虹簇 Kk 是 k 个顶点上的一个完整子图,其中所有的边都有不同的颜色。设 e(G) 和 c(G) 分别为 G 中的边数和颜色数。本文将证明,对于任意ɛ>0,如果 e(G)+c(G)≥(1+k-3k-2+2ɛ)n2 且 k≥3 ,那么对于足够大的 n,G 中彩虹小群 Kk 的数目为 Ω(nk)。我们还描述了在 k=4,5 时,e(G)+c(G) 最大时没有彩虹簇 Kk 的极值图 G 的特征。我们的结果不仅解决了现有问题,还完善了 Ehard 和 Mohr (2020) 的发现。
{"title":"More on rainbow cliques in edge-colored graphs","authors":"Xiao-Chuan Liu , Danni Peng , Xu Yang","doi":"10.1016/j.ejc.2024.104088","DOIUrl":"10.1016/j.ejc.2024.104088","url":null,"abstract":"<div><div>In an edge-colored graph <span><math><mi>G</mi></math></span>, a rainbow clique <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is a complete subgraph on <span><math><mi>k</mi></math></span> vertices in which all the edges have distinct colors. Let <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the number of edges and colors in <span><math><mi>G</mi></math></span>, respectively. In this paper, we show that for any <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span>, if <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>3</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mn>2</mn><mi>ɛ</mi><mo>)</mo></mrow><mfenced><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mfenced></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, then for sufficiently large <span><math><mi>n</mi></math></span>, the number of rainbow cliques <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> in <span><math><mi>G</mi></math></span> is <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</div><div>We also characterize the extremal graphs <span><math><mi>G</mi></math></span> without a rainbow clique <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, for <span><math><mrow><mi>k</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn></mrow></math></span>, when <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is maximum.</div><div>Our results not only address existing questions but also complete the findings of Ehard and Mohr (2020).</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104088"},"PeriodicalIF":1.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.ejc.2024.104087
Zhibin Du
Let be a graph, whose subdivision is denoted by . Let be the characteristic polynomial of the Laplacian matrix of . In 1974, Kelmans and Chelnokov (1974) gave a graph theoretical interpretation for the coefficients of , in terms of the spanning forests of . In this paper, we present another graph theoretical interpretation of the Laplacian coefficients by using the matching numbers of , generalizing the cases of trees and unicyclic graphs, which were established by Zhou and Gutman (2008) and Chen and Yan (2021), respectively. Analogously, a graph theoretical interpretation of the signless Laplacian coefficients is also presented, whose previous graph theoretical interpretation is based on the so-called TU-subgraphs (the spanning subgraphs whose components are trees or odd-unicyclic graphs) due to Cvetković et al. (2007). Some formulas related to the number of spanning trees are also given.
设 G 是一个图,其细分图用 S(G) 表示。1974 年,Kelmans 和 Chelnokov(1974 年)用 G 的生成林给出了 ϕL(G,x) 系数的图论解释。在本文中,我们利用 S(G) 的匹配数提出了拉普拉奇系数的另一种图论解释,并推广了周和古特曼(2008 年)以及陈和严(2021 年)分别建立的树图和单环图的情况。与此类似,我们还提出了无符号拉普拉奇系数的图论解释,其先前的图论解释是基于 Cvetković 等人(2007 年)提出的所谓 TU 子图(其成分为树形或奇单环图的跨度子图)。此外,还给出了一些与生成树数量相关的公式。
{"title":"When (signless) Laplacian coefficients meet matchings of subdivision","authors":"Zhibin Du","doi":"10.1016/j.ejc.2024.104087","DOIUrl":"10.1016/j.ejc.2024.104087","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph, whose subdivision is denoted by <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Let <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> be the characteristic polynomial of the Laplacian matrix of <span><math><mi>G</mi></math></span>. In 1974, Kelmans and Chelnokov (1974) gave a graph theoretical interpretation for the coefficients of <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, in terms of the spanning forests of <span><math><mi>G</mi></math></span>. In this paper, we present another graph theoretical interpretation of the Laplacian coefficients by using the matching numbers of <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, generalizing the cases of trees and unicyclic graphs, which were established by Zhou and Gutman (2008) and Chen and Yan (2021), respectively. Analogously, a graph theoretical interpretation of the signless Laplacian coefficients is also presented, whose previous graph theoretical interpretation is based on the so-called TU-subgraphs (the spanning subgraphs whose components are trees or odd-unicyclic graphs) due to Cvetković et al. (2007). Some formulas related to the number of spanning trees are also given.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104087"},"PeriodicalIF":1.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.ejc.2024.104084
Daria Poliakova
We prove the combinatorial property of shortness for freehedra. Note that associahedra, a related family of polytopes, are not short.
我们证明了自由曲面的组合短性。需要注意的是,相关联的多面体家族并不简短。
{"title":"Freehedra are short","authors":"Daria Poliakova","doi":"10.1016/j.ejc.2024.104084","DOIUrl":"10.1016/j.ejc.2024.104084","url":null,"abstract":"<div><div>We prove the combinatorial property of shortness for freehedra. Note that associahedra, a related family of polytopes, are not short.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104084"},"PeriodicalIF":1.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.ejc.2024.104085
Jineon Baek
The Erdős–Szekeres conjecture states that any set of more than points in the plane with no three on a line contains the vertices of a convex -gon. Erdős, Tuza, and Valtr strengthened the conjecture by stating that any set of more than points in a plane either contains the vertices of a convex -gon, points lying on a concave downward curve, or points lying on a concave upward curve. They also showed that the generalization is actually equivalent to the Erdős–Szekeres conjecture. We prove the first new case of the Erdős–Tuza–Valtr conjecture since the original 1935 paper of Erdős and Szekeres. Namely, we show that any set of points in the plane with no three points on a line and no two points sharing the same -coordinate either contains 4 points lying on a concave downward curve or the vertices of a convex -gon. The proof is also formalized in Lean 4, a computer proof assistance, to ensure the correctness of the proof.
厄尔多斯-塞克雷斯猜想指出,平面中任何超过 2n-2 个点的集合,只要没有三点在一条直线上,就包含一个凸 n 形的顶点。Erdős、Tuza 和 Valtr 强化了这一猜想,指出平面上任何超过 ∑i=n-ba-2n-2i 个点的集合要么包含凸 n 形的顶点,要么包含位于向下凹曲线上的 a 个点,要么包含位于向上凹曲线上的 b 个点。他们还证明了这一推广实际上等同于厄尔多斯-塞克斯猜想。我们证明了 Erdős-Tuza-Valtr 猜想自 Erdős 和 Szekeres 于 1935 年发表论文以来的第一个新案例。也就是说,我们证明了平面上任何 n-12+2 个点的集合,其中没有三个点在一条直线上,也没有两个点共享相同的 x 坐标,要么包含位于向下凹曲线上的 4 个点,要么包含凸 n 形的顶点。为了确保证明的正确性,还用 Lean 4 这一计算机证明辅助工具将证明形式化。
{"title":"On the Erdős–Tuza–Valtr conjecture","authors":"Jineon Baek","doi":"10.1016/j.ejc.2024.104085","DOIUrl":"10.1016/j.ejc.2024.104085","url":null,"abstract":"<div><div>The Erdős–Szekeres conjecture states that any set of more than <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></math></span> points in the plane with no three on a line contains the vertices of a convex <span><math><mi>n</mi></math></span>-gon. Erdős, Tuza, and Valtr strengthened the conjecture by stating that any set of more than <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mi>n</mi><mo>−</mo><mi>b</mi></mrow><mrow><mi>a</mi><mo>−</mo><mn>2</mn></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>i</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> points in a plane either contains the vertices of a convex <span><math><mi>n</mi></math></span>-gon, <span><math><mi>a</mi></math></span> points lying on a concave downward curve, or <span><math><mi>b</mi></math></span> points lying on a concave upward curve. They also showed that the generalization is actually equivalent to the Erdős–Szekeres conjecture. We prove the first new case of the Erdős–Tuza–Valtr conjecture since the original 1935 paper of Erdős and Szekeres. Namely, we show that any set of <span><math><mrow><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced><mo>+</mo><mn>2</mn></mrow></math></span> points in the plane with no three points on a line and no two points sharing the same <span><math><mi>x</mi></math></span>-coordinate either contains 4 points lying on a concave downward curve or the vertices of a convex <span><math><mi>n</mi></math></span>-gon. The proof is also formalized in <em>Lean 4</em>, a computer proof assistance, to ensure the correctness of the proof.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104085"},"PeriodicalIF":1.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.ejc.2024.104086
Jorge Becerra
It is a classical result that the category of finitely-generated free monoids serves as a PROP for commutative bialgebras. Attaching permutations to fix the order of multiplication, we construct an extension of this category that is equivalent to the PROP for bialgebras.
{"title":"A combinatorial PROP for bialgebras","authors":"Jorge Becerra","doi":"10.1016/j.ejc.2024.104086","DOIUrl":"10.1016/j.ejc.2024.104086","url":null,"abstract":"<div><div>It is a classical result that the category of finitely-generated free monoids serves as a PROP for commutative bialgebras. Attaching permutations to fix the order of multiplication, we construct an extension of this category that is equivalent to the PROP for bialgebras.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104086"},"PeriodicalIF":1.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.ejc.2024.104083
Kathy Q. Ji , Dax T.X. Zhang
The polynomial of the major index over the subset of the Coxeter group is called the Mahonian polynomial over , where is a Mahonian statistic of an element , whereas the polynomial of the major index with the sign over the subset is referred to as the signed Mahonian polynomial over , where is the length of . Gessel, Wachs, and Chow established formulas for the Mahonian polynomials over the sets of derangements in the symmetric group and the hyperoctahedral group . By extending Wachs’ approach and employing a refinement of Stanley’s shuffle theorem established in our recent paper (Ji and Zhang, 2024), we derive a formula for the Mahonian polynomials over the set of derangements in the even-signed permutation group . This completes a picture which is now known for all the classical Weyl groups. Gessel–Simion, Adin–Gessel–Roichman, and Biagioli previously established formulas for the signed Mahonian polynomials over the classical Weyl groups. Building upon their formulas, we derive some new formulas for the signed Mahonian polynomials over the set of derangements in classical Weyl groups. As applications of the formulas for the (signed) Mahonian polynomials over the sets of derangements in the classical Weyl groups, we obtain enumerative formulas of the number of derangements in classical Weyl groups with even lengths.
考斯特群 W 的子集 T 上的主要指数 majW(σ) 的多项式称为 T 上的马洪多项式,其中 majW(σ) 是元素 σ∈T 的马洪统计量、而子集 T 上符号为 (-1)ℓW(σ) 的主要指数 majW(σ) 的多项式称为 T 上的带符号马洪多项式,其中 ℓW(σ) 是 σ∈T 的长度。Gessel、Wachs 和 Chow 建立了对称群 Sn 和超八面体群 Bn 中衍生集上的马洪多项式公式。通过扩展 Wachs 的方法,并利用我们最近的论文(Ji and Zhang, 2024)中建立的斯坦利洗牌定理的改进,我们推导出了偶符号置换群 Dn 的导数集上的马洪多项式公式。这完善了现在已知的所有经典韦尔群的情况。格塞尔-西米昂、阿丁-格塞尔-罗伊克曼和比亚乔利之前建立了经典韦尔群上有符号马洪多项式的公式。在他们的公式基础上,我们推导出了经典韦尔群中导数集上有符号马洪多项式的一些新公式。作为经典韦尔群导数集上(有符号)马洪多项式公式的应用,我们得到了经典韦尔群中偶数长度导数的枚举公式。
{"title":"Signed Mahonian polynomials on derangements in classical Weyl groups","authors":"Kathy Q. Ji , Dax T.X. Zhang","doi":"10.1016/j.ejc.2024.104083","DOIUrl":"10.1016/j.ejc.2024.104083","url":null,"abstract":"<div><div>The polynomial of the major index <span><math><mrow><msub><mrow><mi>maj</mi></mrow><mrow><mi>W</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> over the subset <span><math><mi>T</mi></math></span> of the Coxeter group <span><math><mi>W</mi></math></span> is called the Mahonian polynomial over <span><math><mi>T</mi></math></span>, where <span><math><mrow><msub><mrow><mi>maj</mi></mrow><mrow><mi>W</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> is a Mahonian statistic of an element <span><math><mrow><mi>σ</mi><mo>∈</mo><mi>T</mi></mrow></math></span>, whereas the polynomial of the major index <span><math><mrow><msub><mrow><mi>maj</mi></mrow><mrow><mi>W</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> with the sign <span><math><msup><mrow><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>W</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></msup></math></span> over the subset <span><math><mi>T</mi></math></span> is referred to as the signed Mahonian polynomial over <span><math><mi>T</mi></math></span>, where <span><math><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>W</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> is the length of <span><math><mrow><mi>σ</mi><mo>∈</mo><mi>T</mi></mrow></math></span>. Gessel, Wachs, and Chow established formulas for the Mahonian polynomials over the sets of derangements in the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the hyperoctahedral group <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. By extending Wachs’ approach and employing a refinement of Stanley’s shuffle theorem established in our recent paper (Ji and Zhang, 2024), we derive a formula for the Mahonian polynomials over the set of derangements in the even-signed permutation group <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. This completes a picture which is now known for all the classical Weyl groups. Gessel–Simion, Adin–Gessel–Roichman, and Biagioli previously established formulas for the signed Mahonian polynomials over the classical Weyl groups. Building upon their formulas, we derive some new formulas for the signed Mahonian polynomials over the set of derangements in classical Weyl groups. As applications of the formulas for the (signed) Mahonian polynomials over the sets of derangements in the classical Weyl groups, we obtain enumerative formulas of the number of derangements in classical Weyl groups with even lengths.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104083"},"PeriodicalIF":1.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.ejc.2024.104082
Lucas Aragão , João Pedro Marciano , Walner Mendonça
A classical result of Chvátal implies that if , then any colouring of the edges of in red and blue contains either a monochromatic red or a monochromatic blue . We study a natural generalisation of his result, determining the exact minimum degree condition for a graph on vertices which guarantees that the same Ramsey property holds in . In particular, using a slight generalisation of a result of Haxell, we show that suffices, and that this bound is best possible. We also use a classical result of Bollobás, Erdős, and Straus to prove a tight minimum degree condition in the case for all .
{"title":"Degree conditions for Ramsey goodness of paths","authors":"Lucas Aragão , João Pedro Marciano , Walner Mendonça","doi":"10.1016/j.ejc.2024.104082","DOIUrl":"10.1016/j.ejc.2024.104082","url":null,"abstract":"<div><div>A classical result of Chvátal implies that if <span><math><mrow><mi>n</mi><mo>≥</mo><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, then any colouring of the edges of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> in red and blue contains either a monochromatic red <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> or a monochromatic blue <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. We study a natural generalisation of his result, determining the exact minimum degree condition for a graph <span><math><mi>G</mi></math></span> on <span><math><mrow><mi>n</mi><mo>=</mo><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> vertices which guarantees that the same Ramsey property holds in <span><math><mi>G</mi></math></span>. In particular, using a slight generalisation of a result of Haxell, we show that <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mfenced><mrow><mi>t</mi><mo>/</mo><mn>2</mn></mrow></mfenced></mrow></math></span> suffices, and that this bound is best possible. We also use a classical result of Bollobás, Erdős, and Straus to prove a tight minimum degree condition in the case <span><math><mrow><mi>r</mi><mo>=</mo><mn>3</mn></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104082"},"PeriodicalIF":1.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.ejc.2024.104081
Riccardo W. Maffucci
A 3-polytope is a 3-connected, planar graph. It is called unigraphic if it does not share its vertex degree sequence with any other 3-polytope, up to graph isomorphism. The classification of unigraphic 3-polytopes appears to be a difficult problem.
In this paper we prove that, apart from pyramids, all unigraphic 3-polytopes have no -gonal faces for . Our method involves defining several planar graph transformations on a given 3-polytope containing an -gonal face with . The delicate part is to prove that, for every such 3-polytope, at least one of these transformations both preserves 3-connectivity, and is not an isomorphism.
3 多面体是一个 3 连接的平面图形。如果它的顶点度序列不与任何其他 3 多面体共享,直到图同构,那么它就被称为单图形。在本文中,我们证明了除金字塔外,所有单图形三多面体在 n≥10 时都没有 n 个球面。我们的方法是在一个给定的 3 多面体上定义几个平面图形变换,其中包含一个 n≥10 的 n 角面。最复杂的部分是证明,对于每一个这样的 3 多面体,这些变换中至少有一个既保留了 3 连通性,又不是同构。
{"title":"On the faces of unigraphic 3-polytopes","authors":"Riccardo W. Maffucci","doi":"10.1016/j.ejc.2024.104081","DOIUrl":"10.1016/j.ejc.2024.104081","url":null,"abstract":"<div><div>A 3-polytope is a 3-connected, planar graph. It is called unigraphic if it does not share its vertex degree sequence with any other 3-polytope, up to graph isomorphism. The classification of unigraphic 3-polytopes appears to be a difficult problem.</div><div>In this paper we prove that, apart from pyramids, all unigraphic 3-polytopes have no <span><math><mi>n</mi></math></span>-gonal faces for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>10</mn></mrow></math></span>. Our method involves defining several planar graph transformations on a given 3-polytope containing an <span><math><mi>n</mi></math></span>-gonal face with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>10</mn></mrow></math></span>. The delicate part is to prove that, for every such 3-polytope, at least one of these transformations both preserves 3-connectivity, and is not an isomorphism.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104081"},"PeriodicalIF":1.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.ejc.2024.104080
Yong-Gao Chen, Jin-Hui Fang
<div><div>For a nonempty set <span><math><mi>A</mi></math></span> of integers and an integer <span><math><mi>n</mi></math></span>, let <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of representations of <span><math><mrow><mi>n</mi><mo>=</mo><mi>a</mi><mo>+</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> with <span><math><mrow><mi>a</mi><mo>≤</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mi>a</mi><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>A</mi></mrow></math></span>, and let <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of representations of <span><math><mrow><mi>n</mi><mo>=</mo><mi>a</mi><mo>−</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> with <span><math><mrow><mi>a</mi><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>A</mi></mrow></math></span>. Erdős and Turán (1941) posed the profound conjecture: if <span><math><mi>A</mi></math></span> is a set of positive integers such that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></mrow></math></span> for all sufficiently large <span><math><mi>n</mi></math></span>, then <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is unbounded. Nešetřil and Serra (2004) introduced the notion of bounded sets and confirmed the Erdős–Turán conjecture for all bounded bases. Nathanson (2003) considered the existence of the set <span><math><mi>A</mi></math></span> with logarithmic growth such that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for all integers <span><math><mi>n</mi></math></span>. In this paper, we prove that, for any positive function <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>→</mo><mn>0</mn></mrow></math></span> as <span><math><mrow><mi>x</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, there is a bounded set <span><math><mi>A</mi></math></span> of integers such that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for all integers <span><math><mi>n</mi></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for all positi
{"title":"Bounded unique representation bases for the integers","authors":"Yong-Gao Chen, Jin-Hui Fang","doi":"10.1016/j.ejc.2024.104080","DOIUrl":"10.1016/j.ejc.2024.104080","url":null,"abstract":"<div><div>For a nonempty set <span><math><mi>A</mi></math></span> of integers and an integer <span><math><mi>n</mi></math></span>, let <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of representations of <span><math><mrow><mi>n</mi><mo>=</mo><mi>a</mi><mo>+</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> with <span><math><mrow><mi>a</mi><mo>≤</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mi>a</mi><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>A</mi></mrow></math></span>, and let <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of representations of <span><math><mrow><mi>n</mi><mo>=</mo><mi>a</mi><mo>−</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> with <span><math><mrow><mi>a</mi><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>A</mi></mrow></math></span>. Erdős and Turán (1941) posed the profound conjecture: if <span><math><mi>A</mi></math></span> is a set of positive integers such that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></mrow></math></span> for all sufficiently large <span><math><mi>n</mi></math></span>, then <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is unbounded. Nešetřil and Serra (2004) introduced the notion of bounded sets and confirmed the Erdős–Turán conjecture for all bounded bases. Nathanson (2003) considered the existence of the set <span><math><mi>A</mi></math></span> with logarithmic growth such that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for all integers <span><math><mi>n</mi></math></span>. In this paper, we prove that, for any positive function <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>→</mo><mn>0</mn></mrow></math></span> as <span><math><mrow><mi>x</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, there is a bounded set <span><math><mi>A</mi></math></span> of integers such that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for all integers <span><math><mi>n</mi></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for all positi","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104080"},"PeriodicalIF":1.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}