Ghita Radi Benjelloun, Bouchaib Bahlaouan, Hajar Rizki, Khawla Waddi, Zakaria Asbai, Mohamed Bennani, Tarik Foughal, Said El Antri, Nadia Boutaleb
{"title":"食物环境对微生物形成生物膜能力的影响","authors":"Ghita Radi Benjelloun, Bouchaib Bahlaouan, Hajar Rizki, Khawla Waddi, Zakaria Asbai, Mohamed Bennani, Tarik Foughal, Said El Antri, Nadia Boutaleb","doi":"10.1111/jfs.13120","DOIUrl":null,"url":null,"abstract":"<p>The aim of this study is to understand the effect of the food product's, even in trace amounts, in the biofilm formation potential of <i>Escherichia coli</i> and <i>Staphylococcus aureus.</i> Bacterial adhesion was tested using three different food media, in which bacterial cells were adapted before determining how this would affect their adhesion score and biofilm formation potential: sterilized milk, mineral water, and pasteurized commercial orange juice. After characterization of the bacteria and the adhesion support by the contact angle, the adhesion score obtained by the theoretical mathematical model XDLVO developed by van Oss was compared to that obtained by the experimental approach, in order to examine the role of non-specific (thermodynamic) and specific (biological) interactions in adhesion. Changes in the membrane composition of bacteria, as a function of acclimation conditions, were evaluated by infrared spectroscopy. Results reveal variability in the spectral region between 900 and 1200 cm<sup>−1</sup> specific to capsular polysaccharides (CPS) or lipopolysaccharides (LPS), and also in the range between 2800 and 3000 cm<sup>−1</sup> characteristic of membrane lipids and phospholipids. Biofilm formation by <i>S. aureus</i> and <i>E. coli</i> was affected by commercial UHT milk. This led to increased hydrophobicity and total adhesion energy within the environment of these strains. However, no correlation was observed between the adhesion scores obtained through experimental and theoretical approaches. This underscores the necessity of considering the specific characteristics of individual food products in understanding the phenomenon of biofilm formation. Understanding, the mechanism, the variations in bacterial surface characteristics, and the conditions that favor or disadvantage the formation of biofilms, may have important implications, in the development of preventive and curative strategies, to control of food-borne infections.</p>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of food environment on the ability of microorganisms to form biofilms\",\"authors\":\"Ghita Radi Benjelloun, Bouchaib Bahlaouan, Hajar Rizki, Khawla Waddi, Zakaria Asbai, Mohamed Bennani, Tarik Foughal, Said El Antri, Nadia Boutaleb\",\"doi\":\"10.1111/jfs.13120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this study is to understand the effect of the food product's, even in trace amounts, in the biofilm formation potential of <i>Escherichia coli</i> and <i>Staphylococcus aureus.</i> Bacterial adhesion was tested using three different food media, in which bacterial cells were adapted before determining how this would affect their adhesion score and biofilm formation potential: sterilized milk, mineral water, and pasteurized commercial orange juice. After characterization of the bacteria and the adhesion support by the contact angle, the adhesion score obtained by the theoretical mathematical model XDLVO developed by van Oss was compared to that obtained by the experimental approach, in order to examine the role of non-specific (thermodynamic) and specific (biological) interactions in adhesion. Changes in the membrane composition of bacteria, as a function of acclimation conditions, were evaluated by infrared spectroscopy. Results reveal variability in the spectral region between 900 and 1200 cm<sup>−1</sup> specific to capsular polysaccharides (CPS) or lipopolysaccharides (LPS), and also in the range between 2800 and 3000 cm<sup>−1</sup> characteristic of membrane lipids and phospholipids. Biofilm formation by <i>S. aureus</i> and <i>E. coli</i> was affected by commercial UHT milk. This led to increased hydrophobicity and total adhesion energy within the environment of these strains. However, no correlation was observed between the adhesion scores obtained through experimental and theoretical approaches. This underscores the necessity of considering the specific characteristics of individual food products in understanding the phenomenon of biofilm formation. Understanding, the mechanism, the variations in bacterial surface characteristics, and the conditions that favor or disadvantage the formation of biofilms, may have important implications, in the development of preventive and curative strategies, to control of food-borne infections.</p>\",\"PeriodicalId\":15814,\"journal\":{\"name\":\"Journal of Food Safety\",\"volume\":\"44 2\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Safety\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13120\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13120","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Effect of food environment on the ability of microorganisms to form biofilms
The aim of this study is to understand the effect of the food product's, even in trace amounts, in the biofilm formation potential of Escherichia coli and Staphylococcus aureus. Bacterial adhesion was tested using three different food media, in which bacterial cells were adapted before determining how this would affect their adhesion score and biofilm formation potential: sterilized milk, mineral water, and pasteurized commercial orange juice. After characterization of the bacteria and the adhesion support by the contact angle, the adhesion score obtained by the theoretical mathematical model XDLVO developed by van Oss was compared to that obtained by the experimental approach, in order to examine the role of non-specific (thermodynamic) and specific (biological) interactions in adhesion. Changes in the membrane composition of bacteria, as a function of acclimation conditions, were evaluated by infrared spectroscopy. Results reveal variability in the spectral region between 900 and 1200 cm−1 specific to capsular polysaccharides (CPS) or lipopolysaccharides (LPS), and also in the range between 2800 and 3000 cm−1 characteristic of membrane lipids and phospholipids. Biofilm formation by S. aureus and E. coli was affected by commercial UHT milk. This led to increased hydrophobicity and total adhesion energy within the environment of these strains. However, no correlation was observed between the adhesion scores obtained through experimental and theoretical approaches. This underscores the necessity of considering the specific characteristics of individual food products in understanding the phenomenon of biofilm formation. Understanding, the mechanism, the variations in bacterial surface characteristics, and the conditions that favor or disadvantage the formation of biofilms, may have important implications, in the development of preventive and curative strategies, to control of food-borne infections.
期刊介绍:
The Journal of Food Safety emphasizes mechanistic studies involving inhibition, injury, and metabolism of food poisoning microorganisms, as well as the regulation of growth and toxin production in both model systems and complex food substrates. It also focuses on pathogens which cause food-borne illness, helping readers understand the factors affecting the initial detection of parasites, their development, transmission, and methods of control and destruction.