Maria Vigo, Virgilio Hermoso, Joan Navarro, Joan Sala-Coromina, Joan B. Company, Sylvaine Giakoumi
{"title":"动态海洋空间规划促进保护和渔业效益","authors":"Maria Vigo, Virgilio Hermoso, Joan Navarro, Joan Sala-Coromina, Joan B. Company, Sylvaine Giakoumi","doi":"10.1111/faf.12830","DOIUrl":null,"url":null,"abstract":"<p>The increasing global demand for marine resources raises concerns about sustainable resource management and biodiversity conservation. Spatial closures, such as marine protected areas, can be valuable tools for maintaining and restoring exploited populations. When these spatial closures adopt a dynamic nature being adapted to the changing environment, they can effectively account for factors such as shifting species distributions, which enhances their potential to achieve ecological and socio-economic objectives. Here, we adapted a decision-support tool (the software Marxan), typically used for selecting static and permanent areas, to produce management recommendations that integrate permanent and temporal closures to fisheries. Our aim was to compare the outputs of a static network of permanent no-take reserves with four other dynamic scenarios, including permanent and temporal closures that account for seasonal variations in the populations of species. All scenarios prioritized sites for the conservation of one of the most valuable European fishing stocks, the Norway lobster (<i>Nephrops norvegicus</i>). Additionally, we considered 12 other commercially exploited species captured by the Norway lobster fishery. The assessed outputs included retained biomass, area extent, closure type (permanent and seasonal) and opportunity costs within each scenario. We observed that all dynamic scenarios required fewer management areas permanently closed than the static scenario. This resulted in a lower opportunity cost for fisheries but also a higher capacity for biodiversity conservation. Therefore, complementing permanent with temporal closures could enhance biodiversity conservation and fisheries management. The novel dynamic planning method presented here could be applicable to other species, ecosystems and socio-economic contexts.</p>","PeriodicalId":169,"journal":{"name":"Fish and Fisheries","volume":"25 4","pages":"630-646"},"PeriodicalIF":5.6000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/faf.12830","citationCount":"0","resultStr":"{\"title\":\"Dynamic marine spatial planning for conservation and fisheries benefits\",\"authors\":\"Maria Vigo, Virgilio Hermoso, Joan Navarro, Joan Sala-Coromina, Joan B. Company, Sylvaine Giakoumi\",\"doi\":\"10.1111/faf.12830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The increasing global demand for marine resources raises concerns about sustainable resource management and biodiversity conservation. Spatial closures, such as marine protected areas, can be valuable tools for maintaining and restoring exploited populations. When these spatial closures adopt a dynamic nature being adapted to the changing environment, they can effectively account for factors such as shifting species distributions, which enhances their potential to achieve ecological and socio-economic objectives. Here, we adapted a decision-support tool (the software Marxan), typically used for selecting static and permanent areas, to produce management recommendations that integrate permanent and temporal closures to fisheries. Our aim was to compare the outputs of a static network of permanent no-take reserves with four other dynamic scenarios, including permanent and temporal closures that account for seasonal variations in the populations of species. All scenarios prioritized sites for the conservation of one of the most valuable European fishing stocks, the Norway lobster (<i>Nephrops norvegicus</i>). Additionally, we considered 12 other commercially exploited species captured by the Norway lobster fishery. The assessed outputs included retained biomass, area extent, closure type (permanent and seasonal) and opportunity costs within each scenario. We observed that all dynamic scenarios required fewer management areas permanently closed than the static scenario. This resulted in a lower opportunity cost for fisheries but also a higher capacity for biodiversity conservation. Therefore, complementing permanent with temporal closures could enhance biodiversity conservation and fisheries management. The novel dynamic planning method presented here could be applicable to other species, ecosystems and socio-economic contexts.</p>\",\"PeriodicalId\":169,\"journal\":{\"name\":\"Fish and Fisheries\",\"volume\":\"25 4\",\"pages\":\"630-646\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/faf.12830\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish and Fisheries\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/faf.12830\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and Fisheries","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/faf.12830","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Dynamic marine spatial planning for conservation and fisheries benefits
The increasing global demand for marine resources raises concerns about sustainable resource management and biodiversity conservation. Spatial closures, such as marine protected areas, can be valuable tools for maintaining and restoring exploited populations. When these spatial closures adopt a dynamic nature being adapted to the changing environment, they can effectively account for factors such as shifting species distributions, which enhances their potential to achieve ecological and socio-economic objectives. Here, we adapted a decision-support tool (the software Marxan), typically used for selecting static and permanent areas, to produce management recommendations that integrate permanent and temporal closures to fisheries. Our aim was to compare the outputs of a static network of permanent no-take reserves with four other dynamic scenarios, including permanent and temporal closures that account for seasonal variations in the populations of species. All scenarios prioritized sites for the conservation of one of the most valuable European fishing stocks, the Norway lobster (Nephrops norvegicus). Additionally, we considered 12 other commercially exploited species captured by the Norway lobster fishery. The assessed outputs included retained biomass, area extent, closure type (permanent and seasonal) and opportunity costs within each scenario. We observed that all dynamic scenarios required fewer management areas permanently closed than the static scenario. This resulted in a lower opportunity cost for fisheries but also a higher capacity for biodiversity conservation. Therefore, complementing permanent with temporal closures could enhance biodiversity conservation and fisheries management. The novel dynamic planning method presented here could be applicable to other species, ecosystems and socio-economic contexts.
期刊介绍:
Fish and Fisheries adopts a broad, interdisciplinary approach to the subject of fish biology and fisheries. It draws contributions in the form of major synoptic papers and syntheses or meta-analyses that lay out new approaches, re-examine existing findings, methods or theory, and discuss papers and commentaries from diverse areas. Focal areas include fish palaeontology, molecular biology and ecology, genetics, biochemistry, physiology, ecology, behaviour, evolutionary studies, conservation, assessment, population dynamics, mathematical modelling, ecosystem analysis and the social, economic and policy aspects of fisheries where they are grounded in a scientific approach. A paper in Fish and Fisheries must draw upon all key elements of the existing literature on a topic, normally have a broad geographic and/or taxonomic scope, and provide general points which make it compelling to a wide range of readers whatever their geographical location. So, in short, we aim to publish articles that make syntheses of old or synoptic, long-term or spatially widespread data, introduce or consolidate fresh concepts or theory, or, in the Ghoti section, briefly justify preliminary, new synoptic ideas. Please note that authors of submissions not meeting this mandate will be directed to the appropriate primary literature.