{"title":"基于动态摩擦系数估算的湿式双离合器自适应扭矩控制","authors":"Antai Li, Datong Qin, Zheng Guo","doi":"10.1016/j.mechatronics.2024.103175","DOIUrl":null,"url":null,"abstract":"<div><p>Fluctuations in oil temperature, changes in friction plate temperature, and friction plate wear significantly influence the precision of torque control in wet clutches, consequently impacting vehicle launch and gear shift quality. In this study, we introduce a novel approach for estimating the dynamic friction coefficient of wet clutches and develop a feedforward torque controller tailored to dual-clutch transmissions. This controller adeptly compensates for the effects of oil temperature variations, friction plate temperature shifts, and wear. We also incorporated an observer for real-time estimation of clutch torque. The dynamic friction coefficient of the clutch is continuously estimated using models that account for the influence of oil temperature, friction plate temperature, and service mileage. Leveraging this estimated dynamic friction coefficient, the clutch torque is precisely controlled during slip engagement. Our co-simulation results affirm the accuracy of the controller presented in this paper. Even after changes in factors affecting friction coefficients, it consistently maintains control precision, surpassing non-adaptive controllers based on pressure-torque and pressure-speed difference-torque models. Bench testing further validates the controller's accuracy in torque control and its adaptability to fluctuations in oil temperature, friction plate temperature, and wear.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"100 ","pages":"Article 103175"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive torque control of wet dual clutch based on dynamic friction coefficient estimation\",\"authors\":\"Antai Li, Datong Qin, Zheng Guo\",\"doi\":\"10.1016/j.mechatronics.2024.103175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fluctuations in oil temperature, changes in friction plate temperature, and friction plate wear significantly influence the precision of torque control in wet clutches, consequently impacting vehicle launch and gear shift quality. In this study, we introduce a novel approach for estimating the dynamic friction coefficient of wet clutches and develop a feedforward torque controller tailored to dual-clutch transmissions. This controller adeptly compensates for the effects of oil temperature variations, friction plate temperature shifts, and wear. We also incorporated an observer for real-time estimation of clutch torque. The dynamic friction coefficient of the clutch is continuously estimated using models that account for the influence of oil temperature, friction plate temperature, and service mileage. Leveraging this estimated dynamic friction coefficient, the clutch torque is precisely controlled during slip engagement. Our co-simulation results affirm the accuracy of the controller presented in this paper. Even after changes in factors affecting friction coefficients, it consistently maintains control precision, surpassing non-adaptive controllers based on pressure-torque and pressure-speed difference-torque models. Bench testing further validates the controller's accuracy in torque control and its adaptability to fluctuations in oil temperature, friction plate temperature, and wear.</p></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"100 \",\"pages\":\"Article 103175\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415824000400\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824000400","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Adaptive torque control of wet dual clutch based on dynamic friction coefficient estimation
Fluctuations in oil temperature, changes in friction plate temperature, and friction plate wear significantly influence the precision of torque control in wet clutches, consequently impacting vehicle launch and gear shift quality. In this study, we introduce a novel approach for estimating the dynamic friction coefficient of wet clutches and develop a feedforward torque controller tailored to dual-clutch transmissions. This controller adeptly compensates for the effects of oil temperature variations, friction plate temperature shifts, and wear. We also incorporated an observer for real-time estimation of clutch torque. The dynamic friction coefficient of the clutch is continuously estimated using models that account for the influence of oil temperature, friction plate temperature, and service mileage. Leveraging this estimated dynamic friction coefficient, the clutch torque is precisely controlled during slip engagement. Our co-simulation results affirm the accuracy of the controller presented in this paper. Even after changes in factors affecting friction coefficients, it consistently maintains control precision, surpassing non-adaptive controllers based on pressure-torque and pressure-speed difference-torque models. Bench testing further validates the controller's accuracy in torque control and its adaptability to fluctuations in oil temperature, friction plate temperature, and wear.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.