Christian Berthold , Johann Gross , Christian Frey , Malte Krack
{"title":"频域内非线性涡轮叶片振动的完全耦合强迫响应分析","authors":"Christian Berthold , Johann Gross , Christian Frey , Malte Krack","doi":"10.1016/j.jfluidstructs.2024.104112","DOIUrl":null,"url":null,"abstract":"<div><p>For the first time, a fully-coupled Harmonic Balance method is developed for the forced response of turbomachinery blades. The method is applied to a state-of-the-art model of a turbine bladed disk with interlocked shrouds subjected to wake-induced loading. The recurrent partial opening and closing of the pre-loaded shroud contact causes a softening effect, leading to turning points in the amplitude–frequency curve near resonance. Therefore, the coupled solver is embedded into a numerical path continuation framework. Two variants are developed: the coupled continuation of the solution path, and the coupled re-iteration of selected solution points. While the re-iteration variant is slightly more costly per solution point, it has the important advantage that it can be run completely in parallel, which substantially reduces the wall clock time. It is shown that wake- and vibration-induced flow fields do not linearly superimpose, leading to a severe under-/overestimation of the resonant vibration level by the influence-coefficient-based state-of-the-art methods (which rely on this linearity assumption).</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"127 ","pages":"Article 104112"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0889974624000471/pdfft?md5=ae82e838f321cdeaa6b028c56c3567e8&pid=1-s2.0-S0889974624000471-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fully coupled forced response analysis of nonlinear turbine blade vibrations in the frequency domain\",\"authors\":\"Christian Berthold , Johann Gross , Christian Frey , Malte Krack\",\"doi\":\"10.1016/j.jfluidstructs.2024.104112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For the first time, a fully-coupled Harmonic Balance method is developed for the forced response of turbomachinery blades. The method is applied to a state-of-the-art model of a turbine bladed disk with interlocked shrouds subjected to wake-induced loading. The recurrent partial opening and closing of the pre-loaded shroud contact causes a softening effect, leading to turning points in the amplitude–frequency curve near resonance. Therefore, the coupled solver is embedded into a numerical path continuation framework. Two variants are developed: the coupled continuation of the solution path, and the coupled re-iteration of selected solution points. While the re-iteration variant is slightly more costly per solution point, it has the important advantage that it can be run completely in parallel, which substantially reduces the wall clock time. It is shown that wake- and vibration-induced flow fields do not linearly superimpose, leading to a severe under-/overestimation of the resonant vibration level by the influence-coefficient-based state-of-the-art methods (which rely on this linearity assumption).</p></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":\"127 \",\"pages\":\"Article 104112\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0889974624000471/pdfft?md5=ae82e838f321cdeaa6b028c56c3567e8&pid=1-s2.0-S0889974624000471-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624000471\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624000471","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Fully coupled forced response analysis of nonlinear turbine blade vibrations in the frequency domain
For the first time, a fully-coupled Harmonic Balance method is developed for the forced response of turbomachinery blades. The method is applied to a state-of-the-art model of a turbine bladed disk with interlocked shrouds subjected to wake-induced loading. The recurrent partial opening and closing of the pre-loaded shroud contact causes a softening effect, leading to turning points in the amplitude–frequency curve near resonance. Therefore, the coupled solver is embedded into a numerical path continuation framework. Two variants are developed: the coupled continuation of the solution path, and the coupled re-iteration of selected solution points. While the re-iteration variant is slightly more costly per solution point, it has the important advantage that it can be run completely in parallel, which substantially reduces the wall clock time. It is shown that wake- and vibration-induced flow fields do not linearly superimpose, leading to a severe under-/overestimation of the resonant vibration level by the influence-coefficient-based state-of-the-art methods (which rely on this linearity assumption).
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.