利用英国生物库和 EyePACS 10K 数据集开发和验证深度学习模型,从视网膜图像预测 10 年动脉粥样硬化性心血管疾病风险

IF 2.6 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular digital health journal Pub Date : 2024-04-01 DOI:10.1016/j.cvdhj.2023.12.004
Ehsan Vaghefi PhD , David Squirrell FRANZCO , Song Yang MSC , Songyang An MSC , Li Xie PhD , Mary K. Durbin MD, PhD , Huiyuan Hou PhD , John Marshall PhD , Jacqueline Shreibati MD, MS , Michael V. McConnell MD MSEE , Matthew Budoff MD
{"title":"利用英国生物库和 EyePACS 10K 数据集开发和验证深度学习模型,从视网膜图像预测 10 年动脉粥样硬化性心血管疾病风险","authors":"Ehsan Vaghefi PhD ,&nbsp;David Squirrell FRANZCO ,&nbsp;Song Yang MSC ,&nbsp;Songyang An MSC ,&nbsp;Li Xie PhD ,&nbsp;Mary K. Durbin MD, PhD ,&nbsp;Huiyuan Hou PhD ,&nbsp;John Marshall PhD ,&nbsp;Jacqueline Shreibati MD, MS ,&nbsp;Michael V. McConnell MD MSEE ,&nbsp;Matthew Budoff MD","doi":"10.1016/j.cvdhj.2023.12.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of death globally, and early detection of high-risk individuals is essential for initiating timely interventions. The authors aimed to develop and validate a deep learning (DL) model to predict an individual’s elevated 10-year ASCVD risk score based on retinal images and limited demographic data.</p></div><div><h3>Methods</h3><p>The study used 89,894 retinal fundus images from 44,176 UK Biobank participants (96% non-Hispanic White, 5% diabetic) to train and test the DL model. The DL model was developed using retinal images plus age, race/ethnicity, and sex at birth to predict an individual’s 10-year ASCVD risk score using the pooled cohort equation (PCE) as the ground truth. This model was then tested on the US EyePACS 10K dataset (5.8% non-Hispanic White, 99.9% diabetic), composed of 18,900 images from 8969 diabetic individuals. Elevated ASCVD risk was defined as a PCE score of ≥7.5%.</p></div><div><h3>Results</h3><p>In the UK Biobank internal validation dataset, the DL model achieved an area under the receiver operating characteristic curve of 0.89, sensitivity 84%, and specificity 90%, for detecting individuals with elevated ASCVD risk scores. In the EyePACS 10K and with the addition of a regression-derived diabetes modifier, it achieved sensitivity 94%, specificity 72%, mean error -0.2%, and mean absolute error 3.1%.</p></div><div><h3>Conclusion</h3><p>This study demonstrates that DL models using retinal images can provide an additional approach to estimating ASCVD risk, as well as the value of applying DL models to different external datasets and opportunities about ASCVD risk assessment in patients living with diabetes.</p></div>","PeriodicalId":72527,"journal":{"name":"Cardiovascular digital health journal","volume":"5 2","pages":"Pages 59-69"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266669362400001X/pdfft?md5=82e5d28f7983c1aceab3b3bd0540d8ce&pid=1-s2.0-S266669362400001X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a deep-learning model to predict 10-year atherosclerotic cardiovascular disease risk from retinal images using the UK Biobank and EyePACS 10K datasets\",\"authors\":\"Ehsan Vaghefi PhD ,&nbsp;David Squirrell FRANZCO ,&nbsp;Song Yang MSC ,&nbsp;Songyang An MSC ,&nbsp;Li Xie PhD ,&nbsp;Mary K. Durbin MD, PhD ,&nbsp;Huiyuan Hou PhD ,&nbsp;John Marshall PhD ,&nbsp;Jacqueline Shreibati MD, MS ,&nbsp;Michael V. McConnell MD MSEE ,&nbsp;Matthew Budoff MD\",\"doi\":\"10.1016/j.cvdhj.2023.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of death globally, and early detection of high-risk individuals is essential for initiating timely interventions. The authors aimed to develop and validate a deep learning (DL) model to predict an individual’s elevated 10-year ASCVD risk score based on retinal images and limited demographic data.</p></div><div><h3>Methods</h3><p>The study used 89,894 retinal fundus images from 44,176 UK Biobank participants (96% non-Hispanic White, 5% diabetic) to train and test the DL model. The DL model was developed using retinal images plus age, race/ethnicity, and sex at birth to predict an individual’s 10-year ASCVD risk score using the pooled cohort equation (PCE) as the ground truth. This model was then tested on the US EyePACS 10K dataset (5.8% non-Hispanic White, 99.9% diabetic), composed of 18,900 images from 8969 diabetic individuals. Elevated ASCVD risk was defined as a PCE score of ≥7.5%.</p></div><div><h3>Results</h3><p>In the UK Biobank internal validation dataset, the DL model achieved an area under the receiver operating characteristic curve of 0.89, sensitivity 84%, and specificity 90%, for detecting individuals with elevated ASCVD risk scores. In the EyePACS 10K and with the addition of a regression-derived diabetes modifier, it achieved sensitivity 94%, specificity 72%, mean error -0.2%, and mean absolute error 3.1%.</p></div><div><h3>Conclusion</h3><p>This study demonstrates that DL models using retinal images can provide an additional approach to estimating ASCVD risk, as well as the value of applying DL models to different external datasets and opportunities about ASCVD risk assessment in patients living with diabetes.</p></div>\",\"PeriodicalId\":72527,\"journal\":{\"name\":\"Cardiovascular digital health journal\",\"volume\":\"5 2\",\"pages\":\"Pages 59-69\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266669362400001X/pdfft?md5=82e5d28f7983c1aceab3b3bd0540d8ce&pid=1-s2.0-S266669362400001X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular digital health journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266669362400001X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular digital health journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266669362400001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景动脉粥样硬化性心血管疾病(ASCVD)是全球死亡的主要原因之一,早期发现高危人群对于及时启动干预措施至关重要。作者旨在开发和验证一种深度学习(DL)模型,以根据视网膜图像和有限的人口统计学数据预测个人升高的 10 年 ASCVD 风险评分。方法该研究使用了来自 44176 名英国生物库参与者(96% 为非西班牙裔白人,5% 为糖尿病患者)的 89,894 张视网膜眼底图像来训练和测试 DL 模型。DL 模型是利用视网膜图像加上出生时的年龄、种族/人种和性别开发的,以集合队列方程 (PCE) 作为基本事实来预测个人的 10 年 ASCVD 风险得分。该模型随后在美国 EyePACS 10K 数据集(5.8% 为非西班牙裔白人,99.9% 为糖尿病患者)上进行了测试,该数据集由来自 8969 名糖尿病患者的 18900 张图像组成。结果在英国生物库内部验证数据集中,DL 模型在检测 ASCVD 风险评分升高的个体时,接收者操作特征曲线下面积为 0.89,灵敏度为 84%,特异度为 90%。这项研究表明,使用视网膜图像的 DL 模型可以为估计 ASCVD 风险提供一种额外的方法,同时也表明了将 DL 模型应用于不同外部数据集的价值以及糖尿病患者 ASCVD 风险评估的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and validation of a deep-learning model to predict 10-year atherosclerotic cardiovascular disease risk from retinal images using the UK Biobank and EyePACS 10K datasets

Background

Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of death globally, and early detection of high-risk individuals is essential for initiating timely interventions. The authors aimed to develop and validate a deep learning (DL) model to predict an individual’s elevated 10-year ASCVD risk score based on retinal images and limited demographic data.

Methods

The study used 89,894 retinal fundus images from 44,176 UK Biobank participants (96% non-Hispanic White, 5% diabetic) to train and test the DL model. The DL model was developed using retinal images plus age, race/ethnicity, and sex at birth to predict an individual’s 10-year ASCVD risk score using the pooled cohort equation (PCE) as the ground truth. This model was then tested on the US EyePACS 10K dataset (5.8% non-Hispanic White, 99.9% diabetic), composed of 18,900 images from 8969 diabetic individuals. Elevated ASCVD risk was defined as a PCE score of ≥7.5%.

Results

In the UK Biobank internal validation dataset, the DL model achieved an area under the receiver operating characteristic curve of 0.89, sensitivity 84%, and specificity 90%, for detecting individuals with elevated ASCVD risk scores. In the EyePACS 10K and with the addition of a regression-derived diabetes modifier, it achieved sensitivity 94%, specificity 72%, mean error -0.2%, and mean absolute error 3.1%.

Conclusion

This study demonstrates that DL models using retinal images can provide an additional approach to estimating ASCVD risk, as well as the value of applying DL models to different external datasets and opportunities about ASCVD risk assessment in patients living with diabetes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cardiovascular digital health journal
Cardiovascular digital health journal Cardiology and Cardiovascular Medicine
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
58 days
期刊最新文献
Determinants of global cardiac implantable electrical device remote monitoring utilization – Results from an international survey Cellular-Enabled Remote Patient Monitoring for Pregnancies Complicated by Hypertension Point-of-care testing preferences 2020–2022: Trends over the years Feasibility of remote monitoring for fatal coronary heart disease using Apple Watch ECGs Artificial intelligence–based screening for cardiomyopathy in an obstetric population: A pilot study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1