{"title":"离子液体在分离制冷剂混合物中的 R-1243zf 或 R-161 时的选择性吸收作用","authors":"Xiucan Jia, Yuhan Du, Xiaopo Wang","doi":"10.1016/j.jct.2024.107307","DOIUrl":null,"url":null,"abstract":"<div><p>In order to recover and reuse pure refrigerants from the mixtures used in waste refrigeration facility, it is necessary to find a good way for separation. Due to the extremely low vapor pressure and good selectivity, ionic liquids (ILs) are regarded as promising entrainers for the extractive separation process of azeotropic or near-azeotropic mixtures. Phase behavior of refrigerant with ILs is the basic property in the design of selective absorption-separation process. In this work, the solubility of 3,3,3-trifluoropropene (R-1243zf) and ethyl fluoride (R-161) with trihexyltetradecylphosphonium chloride ([P<sub>6,6,6,14</sub>][Cl]) were measured based on the isochoric saturation method. The experimental temperature range was from 283.15 K to 343.15 K. Five activity coefficient models, including Margules, van Laar, Scatchard-Hamer, Wilson and non-random two-liquid (NRTL) model, were used to correlate the experimental data, and the results were discussed. In addition, based on the literature data, the separation capacities of different ILs for refrigerant blends composed of R-1243zf or R-161 were investigated.</p></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"196 ","pages":"Article 107307"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective absorption of ionic liquids in separating R-1243zf or R-161 from refrigerant blends\",\"authors\":\"Xiucan Jia, Yuhan Du, Xiaopo Wang\",\"doi\":\"10.1016/j.jct.2024.107307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to recover and reuse pure refrigerants from the mixtures used in waste refrigeration facility, it is necessary to find a good way for separation. Due to the extremely low vapor pressure and good selectivity, ionic liquids (ILs) are regarded as promising entrainers for the extractive separation process of azeotropic or near-azeotropic mixtures. Phase behavior of refrigerant with ILs is the basic property in the design of selective absorption-separation process. In this work, the solubility of 3,3,3-trifluoropropene (R-1243zf) and ethyl fluoride (R-161) with trihexyltetradecylphosphonium chloride ([P<sub>6,6,6,14</sub>][Cl]) were measured based on the isochoric saturation method. The experimental temperature range was from 283.15 K to 343.15 K. Five activity coefficient models, including Margules, van Laar, Scatchard-Hamer, Wilson and non-random two-liquid (NRTL) model, were used to correlate the experimental data, and the results were discussed. In addition, based on the literature data, the separation capacities of different ILs for refrigerant blends composed of R-1243zf or R-161 were investigated.</p></div>\",\"PeriodicalId\":54867,\"journal\":{\"name\":\"Journal of Chemical Thermodynamics\",\"volume\":\"196 \",\"pages\":\"Article 107307\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021961424000600\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961424000600","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Selective absorption of ionic liquids in separating R-1243zf or R-161 from refrigerant blends
In order to recover and reuse pure refrigerants from the mixtures used in waste refrigeration facility, it is necessary to find a good way for separation. Due to the extremely low vapor pressure and good selectivity, ionic liquids (ILs) are regarded as promising entrainers for the extractive separation process of azeotropic or near-azeotropic mixtures. Phase behavior of refrigerant with ILs is the basic property in the design of selective absorption-separation process. In this work, the solubility of 3,3,3-trifluoropropene (R-1243zf) and ethyl fluoride (R-161) with trihexyltetradecylphosphonium chloride ([P6,6,6,14][Cl]) were measured based on the isochoric saturation method. The experimental temperature range was from 283.15 K to 343.15 K. Five activity coefficient models, including Margules, van Laar, Scatchard-Hamer, Wilson and non-random two-liquid (NRTL) model, were used to correlate the experimental data, and the results were discussed. In addition, based on the literature data, the separation capacities of different ILs for refrigerant blends composed of R-1243zf or R-161 were investigated.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.