非高斯系统的动态事件触发二次非脆弱滤波:处理乘法噪声和缺失测量

IF 15.3 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Ieee-Caa Journal of Automatica Sinica Pub Date : 2024-04-15 DOI:10.1109/JAS.2024.124338
Shaoying Wang;Zidong Wang;Hongli Dong;Yun Chen;Guoping Lu
{"title":"非高斯系统的动态事件触发二次非脆弱滤波:处理乘法噪声和缺失测量","authors":"Shaoying Wang;Zidong Wang;Hongli Dong;Yun Chen;Guoping Lu","doi":"10.1109/JAS.2024.124338","DOIUrl":null,"url":null,"abstract":"This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises, multiple missing measurements as well as the dynamic event-triggered transmission scheme. The multiple missing measurements are characterized through random variables that obey some given probability distributions, and thresholds of the dynamic event-triggered scheme can be adjusted dynamically via an auxiliary variable. Our attention is concentrated on designing a dynamic event-triggered quadratic nonfragile filter in the well-known minimum-variance sense. To this end, the original system is first augmented by stacking its state/measurement vectors together with second-order Kronecker powers, thus the original design issue is reformulated as that of the augmented system. Subsequently, we analyze statistical properties of augmented noises as well as high-order moments of certain random parameters. With the aid of two well-defined matrix difference equations, we not only obtain upper bounds on filtering error covariances, but also minimize those bounds via carefully designing gain parameters. Finally, an example is presented to explain the effectiveness of this newly established quadratic filtering algorithm.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 5","pages":"1127-1138"},"PeriodicalIF":15.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Event-Triggered Quadratic Nonfragile Filtering for Non-Gaussian Systems: Tackling Multiplicative Noises and Missing Measurements\",\"authors\":\"Shaoying Wang;Zidong Wang;Hongli Dong;Yun Chen;Guoping Lu\",\"doi\":\"10.1109/JAS.2024.124338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises, multiple missing measurements as well as the dynamic event-triggered transmission scheme. The multiple missing measurements are characterized through random variables that obey some given probability distributions, and thresholds of the dynamic event-triggered scheme can be adjusted dynamically via an auxiliary variable. Our attention is concentrated on designing a dynamic event-triggered quadratic nonfragile filter in the well-known minimum-variance sense. To this end, the original system is first augmented by stacking its state/measurement vectors together with second-order Kronecker powers, thus the original design issue is reformulated as that of the augmented system. Subsequently, we analyze statistical properties of augmented noises as well as high-order moments of certain random parameters. With the aid of two well-defined matrix difference equations, we not only obtain upper bounds on filtering error covariances, but also minimize those bounds via carefully designing gain parameters. Finally, an example is presented to explain the effectiveness of this newly established quadratic filtering algorithm.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"11 5\",\"pages\":\"1127-1138\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10500724/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10500724/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究线性非高斯系统在乘法噪声、多重缺失测量以及动态事件触发传输方案下的二次非脆弱滤波问题。多重缺失测量通过服从给定概率分布的随机变量来表征,动态事件触发方案的阈值可通过辅助变量进行动态调整。我们的注意力集中在设计一种众所周知的最小方差意义上的动态事件触发二次非脆弱滤波器。为此,我们首先通过将状态/测量向量与二阶 Kronecker 幂堆叠在一起来增强原始系统,从而将原始设计问题重新表述为增强系统的设计问题。随后,我们分析了增强噪声的统计特性以及某些随机参数的高阶矩。借助两个定义明确的矩阵差分方程,我们不仅获得了滤波误差协方差的上界,还通过精心设计增益参数使这些上界最小化。最后,我们通过一个实例来解释这种新建立的二次滤波算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Event-Triggered Quadratic Nonfragile Filtering for Non-Gaussian Systems: Tackling Multiplicative Noises and Missing Measurements
This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises, multiple missing measurements as well as the dynamic event-triggered transmission scheme. The multiple missing measurements are characterized through random variables that obey some given probability distributions, and thresholds of the dynamic event-triggered scheme can be adjusted dynamically via an auxiliary variable. Our attention is concentrated on designing a dynamic event-triggered quadratic nonfragile filter in the well-known minimum-variance sense. To this end, the original system is first augmented by stacking its state/measurement vectors together with second-order Kronecker powers, thus the original design issue is reformulated as that of the augmented system. Subsequently, we analyze statistical properties of augmented noises as well as high-order moments of certain random parameters. With the aid of two well-defined matrix difference equations, we not only obtain upper bounds on filtering error covariances, but also minimize those bounds via carefully designing gain parameters. Finally, an example is presented to explain the effectiveness of this newly established quadratic filtering algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
期刊最新文献
Inside front cover Inside back cover Back cover Front cover On Zero Dynamics and Controllable Cyber-Attacks in Cyber-Physical Systems and Dynamic Coding Schemes as Their Countermeasures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1