通过有向超图结构提高社会传染动力学的预测准确性

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-04-15 DOI:10.1038/s42005-024-01614-9
Juyi Li, Xiaoqun Wu, Jinhu Lü, Ling Lei
{"title":"通过有向超图结构提高社会传染动力学的预测准确性","authors":"Juyi Li, Xiaoqun Wu, Jinhu Lü, Ling Lei","doi":"10.1038/s42005-024-01614-9","DOIUrl":null,"url":null,"abstract":"Evidence from both theoretical and empirical studies suggests that higher-order networks have emerged as powerful tools for modeling social contagions, such as opinion formation. In this article, we develop a model of social contagion on directed hypergraphs by considering the heterogeneity of individuals and environments in terms of reinforcing contagion effects. By distinguishing the directedness between nodes and hyperedges, we find that the bistable interval of the discontinuous phase transition decreases as the directedness strength decreases. Additionally, directed hypergraphs tend to generate bistable intervals when nodes with a large hyperdegree are more likely to adopt a specific opinion, as evidenced by simulations of directionality assignments for three sets of real networks. These findings provide two approaches to enhance the accuracy of predicting social contagion dynamics: one is to increase the stubbornness of all individuals, and the other is to prioritize increasing the stubbornness of highly influential individuals. Directed hypergraphs emerge as a potent framework for analyzing social contagion phenomena, incorporating the nuances of individual heterogeneity and the amplifying effects of environmental contagion reinforcement. The authors demonstrate that the interval of bistability within discontinuous phase transitions contracts with diminishing directedness strength","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01614-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing predictive accuracy in social contagion dynamics via directed hypergraph structures\",\"authors\":\"Juyi Li, Xiaoqun Wu, Jinhu Lü, Ling Lei\",\"doi\":\"10.1038/s42005-024-01614-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evidence from both theoretical and empirical studies suggests that higher-order networks have emerged as powerful tools for modeling social contagions, such as opinion formation. In this article, we develop a model of social contagion on directed hypergraphs by considering the heterogeneity of individuals and environments in terms of reinforcing contagion effects. By distinguishing the directedness between nodes and hyperedges, we find that the bistable interval of the discontinuous phase transition decreases as the directedness strength decreases. Additionally, directed hypergraphs tend to generate bistable intervals when nodes with a large hyperdegree are more likely to adopt a specific opinion, as evidenced by simulations of directionality assignments for three sets of real networks. These findings provide two approaches to enhance the accuracy of predicting social contagion dynamics: one is to increase the stubbornness of all individuals, and the other is to prioritize increasing the stubbornness of highly influential individuals. Directed hypergraphs emerge as a potent framework for analyzing social contagion phenomena, incorporating the nuances of individual heterogeneity and the amplifying effects of environmental contagion reinforcement. The authors demonstrate that the interval of bistability within discontinuous phase transitions contracts with diminishing directedness strength\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01614-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01614-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01614-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

来自理论和实证研究的证据表明,高阶网络已成为舆论形成等社会传染建模的有力工具。在本文中,我们从强化传染效应的角度考虑个体和环境的异质性,建立了有向超图上的社会传染模型。通过区分节点和超桥之间的有向性,我们发现不连续相变的双稳态区间会随着有向性强度的降低而减小。此外,有向超图往往会在超度大的节点更有可能采纳特定意见时产生双稳态区间,三组真实网络的方向性分配模拟证明了这一点。这些发现为提高预测社会传染动态的准确性提供了两种方法:一种是提高所有个体的固执度,另一种是优先提高高影响力个体的固执度。有向超图是分析社会传染现象的有效框架,它结合了个体异质性的细微差别和环境传染强化的放大效应。作者证明,不连续相变中的双稳态区间会随着有向性强度的减弱而收缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing predictive accuracy in social contagion dynamics via directed hypergraph structures
Evidence from both theoretical and empirical studies suggests that higher-order networks have emerged as powerful tools for modeling social contagions, such as opinion formation. In this article, we develop a model of social contagion on directed hypergraphs by considering the heterogeneity of individuals and environments in terms of reinforcing contagion effects. By distinguishing the directedness between nodes and hyperedges, we find that the bistable interval of the discontinuous phase transition decreases as the directedness strength decreases. Additionally, directed hypergraphs tend to generate bistable intervals when nodes with a large hyperdegree are more likely to adopt a specific opinion, as evidenced by simulations of directionality assignments for three sets of real networks. These findings provide two approaches to enhance the accuracy of predicting social contagion dynamics: one is to increase the stubbornness of all individuals, and the other is to prioritize increasing the stubbornness of highly influential individuals. Directed hypergraphs emerge as a potent framework for analyzing social contagion phenomena, incorporating the nuances of individual heterogeneity and the amplifying effects of environmental contagion reinforcement. The authors demonstrate that the interval of bistability within discontinuous phase transitions contracts with diminishing directedness strength
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Morphometry on the sphere: Cartesian and irreducible Minkowski tensors explained and implemented Correlation-driven topological Kondo superconductors Cell stiffening is a label-free indicator of reactive oxygen species-induced intracellular acidification Mitigating density fluctuations in particle-based active nematic simulations Enhancing shift current response via virtual multiband transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1