{"title":"太阳周期24最大阶段(2012-2014年)非洲低纬度地区电子总含量分析","authors":"E.O. Falayi , P.O. Amaechi , J.A. Oluwafemi","doi":"10.1016/j.jastp.2024.106235","DOIUrl":null,"url":null,"abstract":"<div><p>This study examined the ionospheric variation over the African low-latitude region using Total Electron Content (TEC) and its wavelet power spectrum (WPS). TEC data were obtained from five Global Positioning System (GPS) stations located in the trough and crests of the equatorial ionization anomaly (EIA) in both hemispheres during quiet periods of the maximum phase of solar cycle 24 (2012–2014). Our results revealed a striking equinoctial asymmetry (EA) with stronger TEC and higher solar flux in September equinox than March equinox of 2012–2013, with the reverse being the case in 2014. As such, the difference in solar flux between both equinoxes might have played a dominant role in driving the EA. Furthermore, we found a hemispheric asymmetry in TEC with higher value towards the crest in the northern hemisphere (southern hemisphere) in September equinox (March equinox) of 2012–2013. In 2014, nevertheless, TEC was remarkably higher towards the crest located in the southern hemisphere in September equinox only. The chaotic time series methods used to examine the TEC variations showed positive Lyapunov exponents (LE) at all stations. This indicated the presence of chaoticity in the African EIA. Nevertheless, stations located towards the southern crest (Eldoret and Dodoma) had the maximum LE values while those at the magnetic equator (Adis Ababa) and northern crest (Nama and Al Wajh) had the minimum values. Consequently, the changes in the internal dynamics of the equatorial ionosphere have impacts on its chaotic behavior.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of total electron content over the African low-latitude region during the maximum phase of solar cycle 24 (2012–2014)\",\"authors\":\"E.O. Falayi , P.O. Amaechi , J.A. Oluwafemi\",\"doi\":\"10.1016/j.jastp.2024.106235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study examined the ionospheric variation over the African low-latitude region using Total Electron Content (TEC) and its wavelet power spectrum (WPS). TEC data were obtained from five Global Positioning System (GPS) stations located in the trough and crests of the equatorial ionization anomaly (EIA) in both hemispheres during quiet periods of the maximum phase of solar cycle 24 (2012–2014). Our results revealed a striking equinoctial asymmetry (EA) with stronger TEC and higher solar flux in September equinox than March equinox of 2012–2013, with the reverse being the case in 2014. As such, the difference in solar flux between both equinoxes might have played a dominant role in driving the EA. Furthermore, we found a hemispheric asymmetry in TEC with higher value towards the crest in the northern hemisphere (southern hemisphere) in September equinox (March equinox) of 2012–2013. In 2014, nevertheless, TEC was remarkably higher towards the crest located in the southern hemisphere in September equinox only. The chaotic time series methods used to examine the TEC variations showed positive Lyapunov exponents (LE) at all stations. This indicated the presence of chaoticity in the African EIA. Nevertheless, stations located towards the southern crest (Eldoret and Dodoma) had the maximum LE values while those at the magnetic equator (Adis Ababa) and northern crest (Nama and Al Wajh) had the minimum values. Consequently, the changes in the internal dynamics of the equatorial ionosphere have impacts on its chaotic behavior.</p></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624000634\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624000634","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Analysis of total electron content over the African low-latitude region during the maximum phase of solar cycle 24 (2012–2014)
This study examined the ionospheric variation over the African low-latitude region using Total Electron Content (TEC) and its wavelet power spectrum (WPS). TEC data were obtained from five Global Positioning System (GPS) stations located in the trough and crests of the equatorial ionization anomaly (EIA) in both hemispheres during quiet periods of the maximum phase of solar cycle 24 (2012–2014). Our results revealed a striking equinoctial asymmetry (EA) with stronger TEC and higher solar flux in September equinox than March equinox of 2012–2013, with the reverse being the case in 2014. As such, the difference in solar flux between both equinoxes might have played a dominant role in driving the EA. Furthermore, we found a hemispheric asymmetry in TEC with higher value towards the crest in the northern hemisphere (southern hemisphere) in September equinox (March equinox) of 2012–2013. In 2014, nevertheless, TEC was remarkably higher towards the crest located in the southern hemisphere in September equinox only. The chaotic time series methods used to examine the TEC variations showed positive Lyapunov exponents (LE) at all stations. This indicated the presence of chaoticity in the African EIA. Nevertheless, stations located towards the southern crest (Eldoret and Dodoma) had the maximum LE values while those at the magnetic equator (Adis Ababa) and northern crest (Nama and Al Wajh) had the minimum values. Consequently, the changes in the internal dynamics of the equatorial ionosphere have impacts on its chaotic behavior.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.