采用气候室太阳模拟器测试太阳辐射对 NIS 电表的影响

IF 1 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION MAPAN Pub Date : 2024-04-15 DOI:10.1007/s12647-024-00745-2
Eman M. Hosny, Hala M. Abdel Mageed, Adel S. Nada
{"title":"采用气候室太阳模拟器测试太阳辐射对 NIS 电表的影响","authors":"Eman M. Hosny,&nbsp;Hala M. Abdel Mageed,&nbsp;Adel S. Nada","doi":"10.1007/s12647-024-00745-2","DOIUrl":null,"url":null,"abstract":"<div><p>One of the crucial assessments for electricity meters involves the solar radiation test, typically conducted using solar simulators. This work focuses on the modification of the climatic chamber (MKF-240) at the Egyptian National Institute of Standards (NIS) to serve as a solar simulator. To replicate solar test conditions, enhancements such as an aluminum plate and quartz tungsten halogen (QTH) lamps have been integrated into the MKF-240 climatic chamber. Several experimental trials were undertaken to ascertain the optimal number of lamps required to meet testing standards and achieve optimal uniformity within the test area. The solar simulator, designed for irradiance levels up to 1066 W/m<sup>2</sup>, allows for control of output radiation by adjusting the number of illuminated lamps and the distances between lamps and the unit under examination. At maximum irradiance, the simulator demonstrates a remarkable 91.5% uniformity of radiation. To validate its functionality, the solar radiation test was executed on an outdoor electricity meter, exposing it to different loads and varying radiation values. The accuracy of the meter was precisely recorded and analyzed as an essential component of the overall assessment process.</p></div>","PeriodicalId":689,"journal":{"name":"MAPAN","volume":"39 3","pages":"673 - 680"},"PeriodicalIF":1.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adopted Climatic Chamber Solar Simulator for Testing Solar Radiation Effects on Electricity Meters at NIS\",\"authors\":\"Eman M. Hosny,&nbsp;Hala M. Abdel Mageed,&nbsp;Adel S. Nada\",\"doi\":\"10.1007/s12647-024-00745-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the crucial assessments for electricity meters involves the solar radiation test, typically conducted using solar simulators. This work focuses on the modification of the climatic chamber (MKF-240) at the Egyptian National Institute of Standards (NIS) to serve as a solar simulator. To replicate solar test conditions, enhancements such as an aluminum plate and quartz tungsten halogen (QTH) lamps have been integrated into the MKF-240 climatic chamber. Several experimental trials were undertaken to ascertain the optimal number of lamps required to meet testing standards and achieve optimal uniformity within the test area. The solar simulator, designed for irradiance levels up to 1066 W/m<sup>2</sup>, allows for control of output radiation by adjusting the number of illuminated lamps and the distances between lamps and the unit under examination. At maximum irradiance, the simulator demonstrates a remarkable 91.5% uniformity of radiation. To validate its functionality, the solar radiation test was executed on an outdoor electricity meter, exposing it to different loads and varying radiation values. The accuracy of the meter was precisely recorded and analyzed as an essential component of the overall assessment process.</p></div>\",\"PeriodicalId\":689,\"journal\":{\"name\":\"MAPAN\",\"volume\":\"39 3\",\"pages\":\"673 - 680\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAPAN\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12647-024-00745-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAPAN","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12647-024-00745-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

电表的重要评估之一是太阳辐射测试,通常使用太阳模拟器进行。这项工作的重点是改造埃及国家标准局(NIS)的气候室(MKF-240),使其成为太阳能模拟器。为了复制太阳测试条件,在 MKF-240 气候箱中安装了铝板和石英卤钨灯 (QTH) 等增强设备。为了确定达到测试标准所需的最佳灯管数量,并实现测试区域内的最佳均匀性,进行了多次实验测试。太阳能模拟器的设计辐照度最高可达 1066 W/m2,可通过调整照明灯的数量以及灯与被测设备之间的距离来控制输出辐射。在最大辐照度下,模拟器的辐射均匀度高达 91.5%。为了验证其功能,在户外电表上进行了太阳辐射测试,使其承受不同的负载和不同的辐射值。作为整个评估过程的重要组成部分,电表的准确性得到了精确记录和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adopted Climatic Chamber Solar Simulator for Testing Solar Radiation Effects on Electricity Meters at NIS

One of the crucial assessments for electricity meters involves the solar radiation test, typically conducted using solar simulators. This work focuses on the modification of the climatic chamber (MKF-240) at the Egyptian National Institute of Standards (NIS) to serve as a solar simulator. To replicate solar test conditions, enhancements such as an aluminum plate and quartz tungsten halogen (QTH) lamps have been integrated into the MKF-240 climatic chamber. Several experimental trials were undertaken to ascertain the optimal number of lamps required to meet testing standards and achieve optimal uniformity within the test area. The solar simulator, designed for irradiance levels up to 1066 W/m2, allows for control of output radiation by adjusting the number of illuminated lamps and the distances between lamps and the unit under examination. At maximum irradiance, the simulator demonstrates a remarkable 91.5% uniformity of radiation. To validate its functionality, the solar radiation test was executed on an outdoor electricity meter, exposing it to different loads and varying radiation values. The accuracy of the meter was precisely recorded and analyzed as an essential component of the overall assessment process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MAPAN
MAPAN 工程技术-物理:应用
CiteScore
2.30
自引率
20.00%
发文量
91
审稿时长
3 months
期刊介绍: MAPAN-Journal Metrology Society of India is a quarterly publication. It is exclusively devoted to Metrology (Scientific, Industrial or Legal). It has been fulfilling an important need of Metrologists and particularly of quality practitioners by publishing exclusive articles on scientific, industrial and legal metrology. The journal publishes research communication or technical articles of current interest in measurement science; original work, tutorial or survey papers in any metrology related area; reviews and analytical studies in metrology; case studies on reliability, uncertainty in measurements; and reports and results of intercomparison and proficiency testing.
期刊最新文献
Techniques for High Accuracy User Position Estimation Using NavIC Constellation Modified Refractivity-Based Lifted Index Using Exact Formula for Lifted Condensation Level Design and Performance Analysis of Graphene Integrated CPW Fed Fractal Antennae for 5G mm-Wave and Ground Based Navigation Applications A Novel Stepped-Flower Shaped UWB Frequency Reconfigurable Printed Filtering Antenna Using PIN Diodes with Trackable Notch-Band for Mid-5G Band & X-Band Applications Summer-Time Monitoring And Source Apportionment Study Of Both Coarse, Fine, And Ultra-Fine Particulate Pollution In Eastern Himalayan Darjeeling: A Hint To Health Risk During Peak Tourist Season
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1