将信任应用于信息和通信技术驱动的电网服务的运行状态

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE ACM Transactions on Autonomous and Adaptive Systems Pub Date : 2024-04-03 DOI:10.1145/3654672
Michael Brand, Anand Narayan, Sebastian Lehnhoff
{"title":"将信任应用于信息和通信技术驱动的电网服务的运行状态","authors":"Michael Brand, Anand Narayan, Sebastian Lehnhoff","doi":"10.1145/3654672","DOIUrl":null,"url":null,"abstract":"<p>Digitalization enables the automation required to operate modern cyber-physical energy systems (CPESs), leading to a shift from hierarchical to organic systems. However, digitalization increases the number of factors affecting the state of a CPES (e.g., software bugs and cyber threats). In addition to established factors like functional correctness, others like security become relevant but are yet to be integrated into an operational viewpoint, i.e. a holistic perspective on the system state. Trust in organic computing is an approach to gain a holistic view of the state of systems. It consists of several facets (e.g., functional correctness, security, and reliability), which can be used to assess the state of CPES. Therefore, a trust assessment on all levels can contribute to a coherent state assessment. This paper focuses on the trust in ICT-enabled grid services in a CPES. These are essential for operating the CPES, and their performance relies on various data aspects like availability, timeliness, and correctness. This paper proposes to assess the trust in involved components and data to estimate data correctness, which is crucial for grid services. The assessment is presented considering two exemplary grid services, namely state estimation and coordinated voltage control. Furthermore, the interpretation of different trust facets is also discussed.</p>","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"2021 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying Trust for Operational States of ICT-Enabled Power Grid Services\",\"authors\":\"Michael Brand, Anand Narayan, Sebastian Lehnhoff\",\"doi\":\"10.1145/3654672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Digitalization enables the automation required to operate modern cyber-physical energy systems (CPESs), leading to a shift from hierarchical to organic systems. However, digitalization increases the number of factors affecting the state of a CPES (e.g., software bugs and cyber threats). In addition to established factors like functional correctness, others like security become relevant but are yet to be integrated into an operational viewpoint, i.e. a holistic perspective on the system state. Trust in organic computing is an approach to gain a holistic view of the state of systems. It consists of several facets (e.g., functional correctness, security, and reliability), which can be used to assess the state of CPES. Therefore, a trust assessment on all levels can contribute to a coherent state assessment. This paper focuses on the trust in ICT-enabled grid services in a CPES. These are essential for operating the CPES, and their performance relies on various data aspects like availability, timeliness, and correctness. This paper proposes to assess the trust in involved components and data to estimate data correctness, which is crucial for grid services. The assessment is presented considering two exemplary grid services, namely state estimation and coordinated voltage control. Furthermore, the interpretation of different trust facets is also discussed.</p>\",\"PeriodicalId\":50919,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"volume\":\"2021 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3654672\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3654672","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

数字化实现了现代网络物理能源系统(CPES)运行所需的自动化,导致系统从分层向有机转变。然而,数字化增加了影响 CPES 状态的因素数量(如软件错误和网络威胁)。除了功能正确性等既有因素外,安全性等其他因素也变得十分重要,但这些因素尚未纳入运行视角,即系统状态的整体视角。有机计算中的信任是一种全面了解系统状态的方法。它包括几个方面(如功能正确性、安全性和可靠性),可用于评估 CPES 的状态。因此,对所有层面的信任评估都有助于进行一致的状态评估。本文重点关注 CPES 中由 ICT 支持的电网服务的信任度。这些服务对 CPES 的运行至关重要,其性能依赖于各种数据,如可用性、及时性和正确性。本文建议对相关组件和数据的信任度进行评估,以估计数据的正确性,这对电网服务至关重要。本文考虑了两种典型的电网服务,即状态估计和协调电压控制,提出了评估方法。此外,还讨论了不同信任面的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying Trust for Operational States of ICT-Enabled Power Grid Services

Digitalization enables the automation required to operate modern cyber-physical energy systems (CPESs), leading to a shift from hierarchical to organic systems. However, digitalization increases the number of factors affecting the state of a CPES (e.g., software bugs and cyber threats). In addition to established factors like functional correctness, others like security become relevant but are yet to be integrated into an operational viewpoint, i.e. a holistic perspective on the system state. Trust in organic computing is an approach to gain a holistic view of the state of systems. It consists of several facets (e.g., functional correctness, security, and reliability), which can be used to assess the state of CPES. Therefore, a trust assessment on all levels can contribute to a coherent state assessment. This paper focuses on the trust in ICT-enabled grid services in a CPES. These are essential for operating the CPES, and their performance relies on various data aspects like availability, timeliness, and correctness. This paper proposes to assess the trust in involved components and data to estimate data correctness, which is crucial for grid services. The assessment is presented considering two exemplary grid services, namely state estimation and coordinated voltage control. Furthermore, the interpretation of different trust facets is also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Autonomous and Adaptive Systems
ACM Transactions on Autonomous and Adaptive Systems 工程技术-计算机:理论方法
CiteScore
4.80
自引率
7.40%
发文量
9
审稿时长
>12 weeks
期刊介绍: TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.
期刊最新文献
IBAQ: Frequency-Domain Backdoor Attack Threatening Autonomous Driving via Quadratic Phase Adaptive Scheduling of High-Availability Drone Swarms for Congestion Alleviation in Connected Automated Vehicles Self-Supervised Machine Learning Framework for Online Container Security Attack Detection A Framework for Simultaneous Task Allocation and Planning under Uncertainty Adaptation in Edge Computing: A review on design principles and research challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1