Arezu Jahanshir, Ekwevugbe Omugbe, Joseph Ngene Aniezi, Ifeanyi Jude Njoku, Clement Atachegbe Onate, Edwin Samson Eyube, Samuel Olugbade Ogundeji, Chinonso Mbamara, Raphael Mmaduka Obodo, Michael Chukwudi Onyeaju
{"title":"在无自旋萨尔佩特方程框架内,自旋相关康奈尔势下的重介子质谱分析","authors":"Arezu Jahanshir, Ekwevugbe Omugbe, Joseph Ngene Aniezi, Ifeanyi Jude Njoku, Clement Atachegbe Onate, Edwin Samson Eyube, Samuel Olugbade Ogundeji, Chinonso Mbamara, Raphael Mmaduka Obodo, Michael Chukwudi Onyeaju","doi":"10.1515/phys-2024-0004","DOIUrl":null,"url":null,"abstract":"The energy bound-state solutions of the spinless Salpeter equation (SSE) have been obtained under a spin-dependent Cornell potential function <jats:italic>via</jats:italic> the Wentzel–Kramers–Brillouin approximation. The energy levels were applied to predict the mass spectra for the charmonium, bottomonium, and bottom-charmed mesons. The relativistic corrections for the angular momentum quantum number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0004_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>l</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>l\\gt 0</jats:tex-math> </jats:alternatives> </jats:inline-formula>, total angular momentum quantum numbers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0004_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mi>l</m:mi> <m:mo>,</m:mo> <m:mspace width=\".3em\" /> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mi>l</m:mi> <m:mo>±</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>j=l,\\hspace{.3em}j=l\\pm 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the radial quantum numbers <jats:italic>n</jats:italic> = 1–4 improve the mass spectra. The results agree fairly with experimental data and theoretic results reported in existing works, where the authors utilized different forms of the inter-quark potentials and methods. The deviation of the obtained masses for the charmonium and bottomonium from the observed data yields a total percentage error of 3.32 and 1.11%, respectively. The results indicate that the accuracy of the masses is correlated with the magnitude of masses for the charm and bottom quarks. The SSE together with the phenomenological spin-dependent Cornell potential provides an adequate account of the mass spectroscopy for the heavy mesons and may be used to predict other spectroscopic parameters.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"167 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heavy mesons mass spectroscopy under a spin-dependent Cornell potential within the framework of the spinless Salpeter equation\",\"authors\":\"Arezu Jahanshir, Ekwevugbe Omugbe, Joseph Ngene Aniezi, Ifeanyi Jude Njoku, Clement Atachegbe Onate, Edwin Samson Eyube, Samuel Olugbade Ogundeji, Chinonso Mbamara, Raphael Mmaduka Obodo, Michael Chukwudi Onyeaju\",\"doi\":\"10.1515/phys-2024-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy bound-state solutions of the spinless Salpeter equation (SSE) have been obtained under a spin-dependent Cornell potential function <jats:italic>via</jats:italic> the Wentzel–Kramers–Brillouin approximation. The energy levels were applied to predict the mass spectra for the charmonium, bottomonium, and bottom-charmed mesons. The relativistic corrections for the angular momentum quantum number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2024-0004_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>l</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>l\\\\gt 0</jats:tex-math> </jats:alternatives> </jats:inline-formula>, total angular momentum quantum numbers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2024-0004_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mi>l</m:mi> <m:mo>,</m:mo> <m:mspace width=\\\".3em\\\" /> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mi>l</m:mi> <m:mo>±</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>j=l,\\\\hspace{.3em}j=l\\\\pm 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the radial quantum numbers <jats:italic>n</jats:italic> = 1–4 improve the mass spectra. The results agree fairly with experimental data and theoretic results reported in existing works, where the authors utilized different forms of the inter-quark potentials and methods. The deviation of the obtained masses for the charmonium and bottomonium from the observed data yields a total percentage error of 3.32 and 1.11%, respectively. The results indicate that the accuracy of the masses is correlated with the magnitude of masses for the charm and bottom quarks. The SSE together with the phenomenological spin-dependent Cornell potential provides an adequate account of the mass spectroscopy for the heavy mesons and may be used to predict other spectroscopic parameters.\",\"PeriodicalId\":48710,\"journal\":{\"name\":\"Open Physics\",\"volume\":\"167 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/phys-2024-0004\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2024-0004","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
通过文采尔-克拉默斯-布里渊近似,我们得到了无自旋萨尔佩特方程(SSE)在自旋相关康奈尔势函数下的能界解。这些能级被用于预测粲、底粲和底粲介子的质谱。角动量量子数 l > 0 l\gt 0、总角动量量子数 j = l、j = l ± 1 j=l,\hspace{.3em}j=l\pm 1 和径向量子数 n = 1-4 的相对论修正改善了质谱。这些结果与实验数据和现有著作中报告的理论结果相当吻合,在这些著作中,作者们使用了不同形式的夸克间势能和方法。得到的粲和底子质量与观测数据的偏差分别为 3.32% 和 1.11%。结果表明,质量的准确性与粲夸克和底夸克的质量大小相关。SSE与现象学自旋相关康奈尔势一起充分解释了重介子的质量谱,并可用于预测其他谱参数。
Heavy mesons mass spectroscopy under a spin-dependent Cornell potential within the framework of the spinless Salpeter equation
The energy bound-state solutions of the spinless Salpeter equation (SSE) have been obtained under a spin-dependent Cornell potential function via the Wentzel–Kramers–Brillouin approximation. The energy levels were applied to predict the mass spectra for the charmonium, bottomonium, and bottom-charmed mesons. The relativistic corrections for the angular momentum quantum number l>0l\gt 0, total angular momentum quantum numbers j=l,j=l±1j=l,\hspace{.3em}j=l\pm 1, and the radial quantum numbers n = 1–4 improve the mass spectra. The results agree fairly with experimental data and theoretic results reported in existing works, where the authors utilized different forms of the inter-quark potentials and methods. The deviation of the obtained masses for the charmonium and bottomonium from the observed data yields a total percentage error of 3.32 and 1.11%, respectively. The results indicate that the accuracy of the masses is correlated with the magnitude of masses for the charm and bottom quarks. The SSE together with the phenomenological spin-dependent Cornell potential provides an adequate account of the mass spectroscopy for the heavy mesons and may be used to predict other spectroscopic parameters.
期刊介绍:
Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.