Humaira Yasmin, Laila A. AL-Essa, Showkat Ahmad Lone, Hussam Alrabaiah, Zehba Raizah, Anwar Saeed
{"title":"具有滑动限制的拉伸片上包含金刚石和铜纳米颗粒的磁流体水基混合纳米流体流动","authors":"Humaira Yasmin, Laila A. AL-Essa, Showkat Ahmad Lone, Hussam Alrabaiah, Zehba Raizah, Anwar Saeed","doi":"10.1515/phys-2024-0007","DOIUrl":null,"url":null,"abstract":"Hybrid nanofluid problems are used for augmentation of thermal transportation in various industrial applications. Therefore, the present problem is studied for the heat and mass transportation features of hybrid nanofluid caused by extending surface along with porous media. In this investigation, the authors have emphasized to analyze hybrid nanofluid flow containing diamond and copper nanoparticles on an extending surface. Furthermore, the velocity, temperature, and concentration slip constraints are adopted to examine the flow of fluid. Heat source, chemical reactivity, thermal radiation, Brownian motion and effects are taken into consideration. Nonlinear modeled equations are converted into dimensionless through similarity variables. By adopting the homotopy analysis method, the resulting equations are simulated analytically. The impacts of various emerging factors on the flow profiles (<jats:italic>i.e.</jats:italic>, velocities, temperature, concentration, skin frictions, local Nusselt number, and Sherwood number) are shown using Figures and Tables. The major key findings reveal that the hybrid nanofluid temperature is higher but the concentration is lower for a Brownian diffusivity parameter. Moreover, increment role of heat transport is achieved due to the increment in radiation factor, thermophoresis, Brownian motion factors, and Eckert number. It has also been observed that velocity in <jats:italic>x</jats:italic>-direction converges in the region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0007_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mn>0.8</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>f</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.5</m:mn> </m:math> <jats:tex-math>-0.8\\le {\\hslash }_{\\text{f}}\\le 0.5</jats:tex-math> </jats:alternatives> </jats:inline-formula>, in <jats:italic>y</jats:italic>-direction velocity is convergent in the zone <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0007_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mn>0.6</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>g</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.35</m:mn> </m:math> <jats:tex-math>-0.6\\le {\\hslash }_{\\text{g}}\\le 0.35</jats:tex-math> </jats:alternatives> </jats:inline-formula>, while temperature converges in the region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0007_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mn>0.6</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>θ</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.4</m:mn> </m:math> <jats:tex-math>-0.6\\le {\\hslash }_{\\text{&#x03B8;}}\\le 0.4</jats:tex-math> </jats:alternatives> </jats:inline-formula> and concentration converges in the region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0007_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mn>0.5</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>φ</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.4</m:mn> </m:math> <jats:tex-math>-0.5\\le {\\hslash }_{\\text{&#x03C6;}}\\le 0.4</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetohydrodynamic water-based hybrid nanofluid flow comprising diamond and copper nanoparticles on a stretching sheet with slips constraints\",\"authors\":\"Humaira Yasmin, Laila A. AL-Essa, Showkat Ahmad Lone, Hussam Alrabaiah, Zehba Raizah, Anwar Saeed\",\"doi\":\"10.1515/phys-2024-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid nanofluid problems are used for augmentation of thermal transportation in various industrial applications. Therefore, the present problem is studied for the heat and mass transportation features of hybrid nanofluid caused by extending surface along with porous media. In this investigation, the authors have emphasized to analyze hybrid nanofluid flow containing diamond and copper nanoparticles on an extending surface. Furthermore, the velocity, temperature, and concentration slip constraints are adopted to examine the flow of fluid. Heat source, chemical reactivity, thermal radiation, Brownian motion and effects are taken into consideration. Nonlinear modeled equations are converted into dimensionless through similarity variables. By adopting the homotopy analysis method, the resulting equations are simulated analytically. The impacts of various emerging factors on the flow profiles (<jats:italic>i.e.</jats:italic>, velocities, temperature, concentration, skin frictions, local Nusselt number, and Sherwood number) are shown using Figures and Tables. The major key findings reveal that the hybrid nanofluid temperature is higher but the concentration is lower for a Brownian diffusivity parameter. Moreover, increment role of heat transport is achieved due to the increment in radiation factor, thermophoresis, Brownian motion factors, and Eckert number. It has also been observed that velocity in <jats:italic>x</jats:italic>-direction converges in the region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2024-0007_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mn>0.8</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>f</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.5</m:mn> </m:math> <jats:tex-math>-0.8\\\\le {\\\\hslash }_{\\\\text{f}}\\\\le 0.5</jats:tex-math> </jats:alternatives> </jats:inline-formula>, in <jats:italic>y</jats:italic>-direction velocity is convergent in the zone <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2024-0007_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mn>0.6</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>g</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.35</m:mn> </m:math> <jats:tex-math>-0.6\\\\le {\\\\hslash }_{\\\\text{g}}\\\\le 0.35</jats:tex-math> </jats:alternatives> </jats:inline-formula>, while temperature converges in the region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2024-0007_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mn>0.6</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>θ</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.4</m:mn> </m:math> <jats:tex-math>-0.6\\\\le {\\\\hslash }_{\\\\text{&#x03B8;}}\\\\le 0.4</jats:tex-math> </jats:alternatives> </jats:inline-formula> and concentration converges in the region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2024-0007_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mn>0.5</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>φ</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.4</m:mn> </m:math> <jats:tex-math>-0.5\\\\le {\\\\hslash }_{\\\\text{&#x03C6;}}\\\\le 0.4</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":48710,\"journal\":{\"name\":\"Open Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/phys-2024-0007\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2024-0007","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetohydrodynamic water-based hybrid nanofluid flow comprising diamond and copper nanoparticles on a stretching sheet with slips constraints
Hybrid nanofluid problems are used for augmentation of thermal transportation in various industrial applications. Therefore, the present problem is studied for the heat and mass transportation features of hybrid nanofluid caused by extending surface along with porous media. In this investigation, the authors have emphasized to analyze hybrid nanofluid flow containing diamond and copper nanoparticles on an extending surface. Furthermore, the velocity, temperature, and concentration slip constraints are adopted to examine the flow of fluid. Heat source, chemical reactivity, thermal radiation, Brownian motion and effects are taken into consideration. Nonlinear modeled equations are converted into dimensionless through similarity variables. By adopting the homotopy analysis method, the resulting equations are simulated analytically. The impacts of various emerging factors on the flow profiles (i.e., velocities, temperature, concentration, skin frictions, local Nusselt number, and Sherwood number) are shown using Figures and Tables. The major key findings reveal that the hybrid nanofluid temperature is higher but the concentration is lower for a Brownian diffusivity parameter. Moreover, increment role of heat transport is achieved due to the increment in radiation factor, thermophoresis, Brownian motion factors, and Eckert number. It has also been observed that velocity in x-direction converges in the region −0.8≤ℏf≤0.5-0.8\le {\hslash }_{\text{f}}\le 0.5, in y-direction velocity is convergent in the zone −0.6≤ℏg≤0.35-0.6\le {\hslash }_{\text{g}}\le 0.35, while temperature converges in the region −0.6≤ℏθ≤0.4-0.6\le {\hslash }_{\text{θ}}\le 0.4 and concentration converges in the region −0.5≤ℏφ≤0.4-0.5\le {\hslash }_{\text{φ}}\le 0.4.
期刊介绍:
Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.