具有滑动限制的拉伸片上包含金刚石和铜纳米颗粒的磁流体水基混合纳米流体流动

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Open Physics Pub Date : 2024-04-03 DOI:10.1515/phys-2024-0007
Humaira Yasmin, Laila A. AL-Essa, Showkat Ahmad Lone, Hussam Alrabaiah, Zehba Raizah, Anwar Saeed
{"title":"具有滑动限制的拉伸片上包含金刚石和铜纳米颗粒的磁流体水基混合纳米流体流动","authors":"Humaira Yasmin, Laila A. AL-Essa, Showkat Ahmad Lone, Hussam Alrabaiah, Zehba Raizah, Anwar Saeed","doi":"10.1515/phys-2024-0007","DOIUrl":null,"url":null,"abstract":"Hybrid nanofluid problems are used for augmentation of thermal transportation in various industrial applications. Therefore, the present problem is studied for the heat and mass transportation features of hybrid nanofluid caused by extending surface along with porous media. In this investigation, the authors have emphasized to analyze hybrid nanofluid flow containing diamond and copper nanoparticles on an extending surface. Furthermore, the velocity, temperature, and concentration slip constraints are adopted to examine the flow of fluid. Heat source, chemical reactivity, thermal radiation, Brownian motion and effects are taken into consideration. Nonlinear modeled equations are converted into dimensionless through similarity variables. By adopting the homotopy analysis method, the resulting equations are simulated analytically. The impacts of various emerging factors on the flow profiles (<jats:italic>i.e.</jats:italic>, velocities, temperature, concentration, skin frictions, local Nusselt number, and Sherwood number) are shown using Figures and Tables. The major key findings reveal that the hybrid nanofluid temperature is higher but the concentration is lower for a Brownian diffusivity parameter. Moreover, increment role of heat transport is achieved due to the increment in radiation factor, thermophoresis, Brownian motion factors, and Eckert number. It has also been observed that velocity in <jats:italic>x</jats:italic>-direction converges in the region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0007_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mn>0.8</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>f</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.5</m:mn> </m:math> <jats:tex-math>-0.8\\le {\\hslash }_{\\text{f}}\\le 0.5</jats:tex-math> </jats:alternatives> </jats:inline-formula>, in <jats:italic>y</jats:italic>-direction velocity is convergent in the zone <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0007_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mn>0.6</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>g</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.35</m:mn> </m:math> <jats:tex-math>-0.6\\le {\\hslash }_{\\text{g}}\\le 0.35</jats:tex-math> </jats:alternatives> </jats:inline-formula>, while temperature converges in the region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0007_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mn>0.6</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>θ</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.4</m:mn> </m:math> <jats:tex-math>-0.6\\le {\\hslash }_{\\text{&amp;#x03B8;}}\\le 0.4</jats:tex-math> </jats:alternatives> </jats:inline-formula> and concentration converges in the region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0007_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mn>0.5</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>φ</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.4</m:mn> </m:math> <jats:tex-math>-0.5\\le {\\hslash }_{\\text{&amp;#x03C6;}}\\le 0.4</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetohydrodynamic water-based hybrid nanofluid flow comprising diamond and copper nanoparticles on a stretching sheet with slips constraints\",\"authors\":\"Humaira Yasmin, Laila A. AL-Essa, Showkat Ahmad Lone, Hussam Alrabaiah, Zehba Raizah, Anwar Saeed\",\"doi\":\"10.1515/phys-2024-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid nanofluid problems are used for augmentation of thermal transportation in various industrial applications. Therefore, the present problem is studied for the heat and mass transportation features of hybrid nanofluid caused by extending surface along with porous media. In this investigation, the authors have emphasized to analyze hybrid nanofluid flow containing diamond and copper nanoparticles on an extending surface. Furthermore, the velocity, temperature, and concentration slip constraints are adopted to examine the flow of fluid. Heat source, chemical reactivity, thermal radiation, Brownian motion and effects are taken into consideration. Nonlinear modeled equations are converted into dimensionless through similarity variables. By adopting the homotopy analysis method, the resulting equations are simulated analytically. The impacts of various emerging factors on the flow profiles (<jats:italic>i.e.</jats:italic>, velocities, temperature, concentration, skin frictions, local Nusselt number, and Sherwood number) are shown using Figures and Tables. The major key findings reveal that the hybrid nanofluid temperature is higher but the concentration is lower for a Brownian diffusivity parameter. Moreover, increment role of heat transport is achieved due to the increment in radiation factor, thermophoresis, Brownian motion factors, and Eckert number. It has also been observed that velocity in <jats:italic>x</jats:italic>-direction converges in the region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2024-0007_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mn>0.8</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>f</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.5</m:mn> </m:math> <jats:tex-math>-0.8\\\\le {\\\\hslash }_{\\\\text{f}}\\\\le 0.5</jats:tex-math> </jats:alternatives> </jats:inline-formula>, in <jats:italic>y</jats:italic>-direction velocity is convergent in the zone <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2024-0007_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mn>0.6</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>g</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.35</m:mn> </m:math> <jats:tex-math>-0.6\\\\le {\\\\hslash }_{\\\\text{g}}\\\\le 0.35</jats:tex-math> </jats:alternatives> </jats:inline-formula>, while temperature converges in the region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2024-0007_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mn>0.6</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>θ</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.4</m:mn> </m:math> <jats:tex-math>-0.6\\\\le {\\\\hslash }_{\\\\text{&amp;#x03B8;}}\\\\le 0.4</jats:tex-math> </jats:alternatives> </jats:inline-formula> and concentration converges in the region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2024-0007_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mn>0.5</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>φ</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.4</m:mn> </m:math> <jats:tex-math>-0.5\\\\le {\\\\hslash }_{\\\\text{&amp;#x03C6;}}\\\\le 0.4</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":48710,\"journal\":{\"name\":\"Open Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/phys-2024-0007\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2024-0007","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

混合纳米流体问题可用于增强各种工业应用中的热传输。因此,本问题研究的是混合纳米流体在多孔介质的延伸表面上产生的热量和质量传输特性。在这项研究中,作者重点分析了在延伸表面上含有金刚石和铜纳米粒子的混合纳米流体流动。此外,还采用了速度、温度和浓度滑移约束来研究流体的流动。同时还考虑了热源、化学反应、热辐射、布朗运动及其影响。通过相似变量将非线性模型方程转换为无量纲方程。通过采用同调分析方法,对得到的方程进行分析模拟。图和表显示了各种新出现的因素(即速度、温度、浓度、表皮摩擦、局部努塞尔特数和舍伍德数)对流动剖面的影响。主要发现表明,在布朗扩散参数下,混合纳米流体的温度较高,但浓度较低。此外,由于辐射系数、热泳、布朗运动系数和埃克特数的增加,热传输的作用也得到了增强。还观察到,x方向的速度收敛于- 0.8 ≤ ℏ f ≤ 0.5 -0.8\le {\hslash }_\{text{f}}\le 0.5区域,y方向的速度收敛于- 0.6 ≤ ℏ g ≤ 0.35 -0.6\le {\hslash }_\{text{g}}\le 0.35区域,而温度收敛于- 0.6 ≤ ℏ g ≤ 0.35 -0.6\le {\hslash }_\{text{g}}\le 0.35区域。35 ,而温度收敛区域为 - 0.6 ≤ ℏ θ ≤ 0.4 -0.6\le {\hslash }_{text\{&#x03B8;}}\le 0.4,浓度收敛区域为 - 0.5 ≤ ℏ φ ≤ 0.4 -0.5\le {\hslash }_{\text{&#x03C6;}}\le 0.4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetohydrodynamic water-based hybrid nanofluid flow comprising diamond and copper nanoparticles on a stretching sheet with slips constraints
Hybrid nanofluid problems are used for augmentation of thermal transportation in various industrial applications. Therefore, the present problem is studied for the heat and mass transportation features of hybrid nanofluid caused by extending surface along with porous media. In this investigation, the authors have emphasized to analyze hybrid nanofluid flow containing diamond and copper nanoparticles on an extending surface. Furthermore, the velocity, temperature, and concentration slip constraints are adopted to examine the flow of fluid. Heat source, chemical reactivity, thermal radiation, Brownian motion and effects are taken into consideration. Nonlinear modeled equations are converted into dimensionless through similarity variables. By adopting the homotopy analysis method, the resulting equations are simulated analytically. The impacts of various emerging factors on the flow profiles (i.e., velocities, temperature, concentration, skin frictions, local Nusselt number, and Sherwood number) are shown using Figures and Tables. The major key findings reveal that the hybrid nanofluid temperature is higher but the concentration is lower for a Brownian diffusivity parameter. Moreover, increment role of heat transport is achieved due to the increment in radiation factor, thermophoresis, Brownian motion factors, and Eckert number. It has also been observed that velocity in x-direction converges in the region 0.8 f 0.5 -0.8\le {\hslash }_{\text{f}}\le 0.5 , in y-direction velocity is convergent in the zone 0.6 g 0.35 -0.6\le {\hslash }_{\text{g}}\le 0.35 , while temperature converges in the region 0.6 θ 0.4 -0.6\le {\hslash }_{\text{&#x03B8;}}\le 0.4 and concentration converges in the region 0.5 φ 0.4 -0.5\le {\hslash }_{\text{&#x03C6;}}\le 0.4 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Physics
Open Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
3.20
自引率
5.30%
发文量
82
审稿时长
18 weeks
期刊介绍: Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
期刊最新文献
Effectiveness of microwave ablation using two simultaneous antennas for liver malignancy treatment Analysis of a generalized proportional fractional stochastic differential equation incorporating Carathéodory's approximation and applications Improving heat transfer efficiency via optimization and sensitivity assessment in hybrid nanofluid flow with variable magnetism using the Yamada–Ota model Thermosolutal Marangoni convective flow of MHD tangent hyperbolic hybrid nanofluids with elastic deformation and heat source Study on dynamic and static tensile and puncture-resistant mechanical properties of impregnated STF multi-dimensional structure Kevlar fiber reinforced composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1