{"title":"通过多粒子碰撞动力学研究铁流体流经多孔介质时的磁渗透效应","authors":"Patrick Ilg","doi":"10.1007/s11242-024-02077-w","DOIUrl":null,"url":null,"abstract":"<div><p>As more and more promising applications of magnetic nanoparticles in complicated environments are explored, their flow properties in porous media are of increasing interest. We here propose a hybrid approach based on the multiparticle collision dynamics method extended to porous media via friction forces and coupled with Brownian dynamics simulations of the rotational motion of magnetic nanoparticles’ magnetic moment. We simulate flow in planar channels homogeneously filled with a porous medium and verify our implementation by reproducing the analytical velocity profile of the Darcy–Brinkman model in the non-magnetic case. In the presence of an externally applied magnetic field, the non-equilibrium magnetization and friction forces lead to field-dependent velocity profiles that result in effective, field-dependent permeabilities. We provide a theoretical expression for this magneto-permeability effect in analogy with the magneto-viscous effect. Finally, we study the flow through planar channels, where only the walls are covered with a porous medium. We find a smooth crossover from the Poiseuille profile in the center of the channel to Brinkman–Darcy flow in the porous layers. We propose a simple estimate of the thickness of the porous layer based on the flow rate and maximum flow velocity.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 6","pages":"1363 - 1380"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02077-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Magneto-Permeability Effect in Ferrofluid Flow Through Porous Media Studied via Multiparticle Collision Dynamics\",\"authors\":\"Patrick Ilg\",\"doi\":\"10.1007/s11242-024-02077-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As more and more promising applications of magnetic nanoparticles in complicated environments are explored, their flow properties in porous media are of increasing interest. We here propose a hybrid approach based on the multiparticle collision dynamics method extended to porous media via friction forces and coupled with Brownian dynamics simulations of the rotational motion of magnetic nanoparticles’ magnetic moment. We simulate flow in planar channels homogeneously filled with a porous medium and verify our implementation by reproducing the analytical velocity profile of the Darcy–Brinkman model in the non-magnetic case. In the presence of an externally applied magnetic field, the non-equilibrium magnetization and friction forces lead to field-dependent velocity profiles that result in effective, field-dependent permeabilities. We provide a theoretical expression for this magneto-permeability effect in analogy with the magneto-viscous effect. Finally, we study the flow through planar channels, where only the walls are covered with a porous medium. We find a smooth crossover from the Poiseuille profile in the center of the channel to Brinkman–Darcy flow in the porous layers. We propose a simple estimate of the thickness of the porous layer based on the flow rate and maximum flow velocity.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":\"151 6\",\"pages\":\"1363 - 1380\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11242-024-02077-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-024-02077-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02077-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Magneto-Permeability Effect in Ferrofluid Flow Through Porous Media Studied via Multiparticle Collision Dynamics
As more and more promising applications of magnetic nanoparticles in complicated environments are explored, their flow properties in porous media are of increasing interest. We here propose a hybrid approach based on the multiparticle collision dynamics method extended to porous media via friction forces and coupled with Brownian dynamics simulations of the rotational motion of magnetic nanoparticles’ magnetic moment. We simulate flow in planar channels homogeneously filled with a porous medium and verify our implementation by reproducing the analytical velocity profile of the Darcy–Brinkman model in the non-magnetic case. In the presence of an externally applied magnetic field, the non-equilibrium magnetization and friction forces lead to field-dependent velocity profiles that result in effective, field-dependent permeabilities. We provide a theoretical expression for this magneto-permeability effect in analogy with the magneto-viscous effect. Finally, we study the flow through planar channels, where only the walls are covered with a porous medium. We find a smooth crossover from the Poiseuille profile in the center of the channel to Brinkman–Darcy flow in the porous layers. We propose a simple estimate of the thickness of the porous layer based on the flow rate and maximum flow velocity.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).