{"title":"兰金-塞尔伯格 L 函数族中的零点","authors":"Peter Humphries, Jesse Thorner","doi":"10.1112/s0010437x24007085","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {F}_n$</span></span></img></span></span> be the set of all cuspidal automorphic representations <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi$</span></span></img></span></span> of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {GL}_n$</span></span></img></span></span> with unitary central character over a number field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$F$</span></span></img></span></span>. We prove the first unconditional zero density estimate for the set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {S}=\\{L(s,\\pi \\times \\pi ')\\colon \\pi \\in \\mathfrak {F}_n\\}$</span></span></img></span></span> of Rankin–Selberg <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$L$</span></span></img></span></span>-functions, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi '\\in \\mathfrak {F}_{n'}$</span></span></img></span></span> is fixed. We use this density estimate to establish: (i) a hybrid-aspect subconvexity bound at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$s=\\frac {1}{2}$</span></span></img></span></span> for almost all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$L(s,\\pi \\times \\pi ')\\in \\mathcal {S}$</span></span></img></span></span>; (ii) a strong on-average form of effective multiplicity one for almost all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi \\in \\mathfrak {F}_n$</span></span></img></span></span>; and (iii) a positive level of distribution for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$L(s,\\pi \\times \\widetilde {\\pi })$</span></span></img></span></span>, in the sense of Bombieri–Vinogradov, for each <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi \\in \\mathfrak {F}_n$</span></span></img></span></span>.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"40 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zeros of Rankin–Selberg L-functions in families\",\"authors\":\"Peter Humphries, Jesse Thorner\",\"doi\":\"10.1112/s0010437x24007085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathfrak {F}_n$</span></span></img></span></span> be the set of all cuspidal automorphic representations <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\pi$</span></span></img></span></span> of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {GL}_n$</span></span></img></span></span> with unitary central character over a number field <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$F$</span></span></img></span></span>. We prove the first unconditional zero density estimate for the set <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {S}=\\\\{L(s,\\\\pi \\\\times \\\\pi ')\\\\colon \\\\pi \\\\in \\\\mathfrak {F}_n\\\\}$</span></span></img></span></span> of Rankin–Selberg <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$L$</span></span></img></span></span>-functions, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\pi '\\\\in \\\\mathfrak {F}_{n'}$</span></span></img></span></span> is fixed. We use this density estimate to establish: (i) a hybrid-aspect subconvexity bound at <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$s=\\\\frac {1}{2}$</span></span></img></span></span> for almost all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$L(s,\\\\pi \\\\times \\\\pi ')\\\\in \\\\mathcal {S}$</span></span></img></span></span>; (ii) a strong on-average form of effective multiplicity one for almost all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\pi \\\\in \\\\mathfrak {F}_n$</span></span></img></span></span>; and (iii) a positive level of distribution for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$L(s,\\\\pi \\\\times \\\\widetilde {\\\\pi })$</span></span></img></span></span>, in the sense of Bombieri–Vinogradov, for each <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\pi \\\\in \\\\mathfrak {F}_n$</span></span></img></span></span>.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x24007085\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x24007085","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let $\mathfrak {F}_n$ be the set of all cuspidal automorphic representations $\pi$ of $\mathrm {GL}_n$ with unitary central character over a number field $F$. We prove the first unconditional zero density estimate for the set $\mathcal {S}=\{L(s,\pi \times \pi ')\colon \pi \in \mathfrak {F}_n\}$ of Rankin–Selberg $L$-functions, where $\pi '\in \mathfrak {F}_{n'}$ is fixed. We use this density estimate to establish: (i) a hybrid-aspect subconvexity bound at $s=\frac {1}{2}$ for almost all $L(s,\pi \times \pi ')\in \mathcal {S}$; (ii) a strong on-average form of effective multiplicity one for almost all $\pi \in \mathfrak {F}_n$; and (iii) a positive level of distribution for $L(s,\pi \times \widetilde {\pi })$, in the sense of Bombieri–Vinogradov, for each $\pi \in \mathfrak {F}_n$.
期刊介绍:
Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.