首页 > 最新文献

Compositio Mathematica最新文献

英文 中文
A Hamiltonian ∐n BO(n)-action, stratified Morse theory and the J-homomorphism 哈密顿∐n BO(n)作用、分层莫尔斯理论和 J 同态性
IF 1.8 1区 数学 Q1 MATHEMATICS Pub Date : 2024-09-13 DOI: 10.1112/s0010437x24007279
Xin Jin
<p>We use sheaves of spectra to quantize a Hamiltonian <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline5.png"><span data-mathjax-type="texmath"><span>$coprod _n BO(n)$</span></span></img></span></span>-action on <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline7.png"><span data-mathjax-type="texmath"><span>$varinjlim _{N}T^*mathbf {R}^N$</span></span></img></span></span> that naturally arises from Bott periodicity. We employ the category of correspondences developed by Gaitsgory and Rozenblyum [<span>A study in derived algebraic geometry, vol. I. Correspondences and duality</span>, Mathematical Surveys and Monographs, vol. 221 (American Mathematical Society, 2017)] to give an enrichment of stratified Morse theory by the <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline8.png"><span data-mathjax-type="texmath"><span>$J$</span></span></img></span></span>-homomorphism. This provides a key step in the work of Jin [<span>Microlocal sheaf categories and the</span> <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline9.png"><span data-mathjax-type="texmath"><span>$J$</span></span></img></span></span><span>-homomorphism</span>, Preprint (2020), arXiv:2004.14270v4] on the proof of a claim of Jin and Treumann [<span>Brane structures in microlocal sheaf theory</span>, J. Topol. <span>17</span> (2024), e12325]: the classifying map of the local system of brane structures on an (immersed) exact Lagrangian submanifold <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline10.png"><span data-mathjax-type="texmath"><span>$Lsubset T^*mathbf {R}^N$</span></span></img></span></span> is given by the composition of the stable Gauss map <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline11.png"><span data-mathjax-type="texmath"><span>$Lrightarrow U/O$</span></span></img></span></span> and the delooping of the <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline12.png"><span data-mathjax-type="texmath"><span>$J$</span></span></img></span></span>-homomorphism <sp
我们使用谱的剪切来量化 $coprod _n BO(n)$ 作用在 $varinjlim _{N}T^*mathbf {R}^N$ 上的哈密顿$coprod _n BO(n)$作用,这个作用自然来自底周期性。我们采用盖茨戈里和罗曾布利姆开发的对应范畴[《派生代数几何研究》,第一卷。对应性与对偶性,《数学概览与专著》,第 221 卷(美国数学会,2017 年)],通过 $J$ 同构给出了分层莫尔斯理论的丰富性。这为 Jin [Microlocal sheaf categories and the $J$-homorphism, Preprint (2020), arXiv:2004.14270v4] 和 Treumann [Brane structures in microlocal sheaf theory, J. Topol.17 (2024), e12325]:在一个(沉浸的)精确拉格朗日子曼弗雷德 $Lsubset T^*mathbf {R}^N$ 上的本地系统的布勒结构的分类映射是由稳定的高斯映射 $Lrightarrow U/O$ 和 $J$ 同构的脱弯 $U/Orightarrow Bmathrm {Pic}(mathbf {S})$ 的组合给出的。我们特别强调了所涉及范畴的函数性和(对称)一元结构,作为副产品,我们在(对称)一元的$(infty, 2)$对应范畴中产生了(交换)代数/模块对象和它们之间(右涣散)形态的几个具体构造,概括了盖茨戈里和罗曾布利姆的西格尔对象的构造,这可能会引起独立的兴趣。
{"title":"A Hamiltonian ∐n BO(n)-action, stratified Morse theory and the J-homomorphism","authors":"Xin Jin","doi":"10.1112/s0010437x24007279","DOIUrl":"https://doi.org/10.1112/s0010437x24007279","url":null,"abstract":"&lt;p&gt;We use sheaves of spectra to quantize a Hamiltonian &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline5.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$coprod _n BO(n)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-action on &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline7.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$varinjlim _{N}T^*mathbf {R}^N$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; that naturally arises from Bott periodicity. We employ the category of correspondences developed by Gaitsgory and Rozenblyum [&lt;span&gt;A study in derived algebraic geometry, vol. I. Correspondences and duality&lt;/span&gt;, Mathematical Surveys and Monographs, vol. 221 (American Mathematical Society, 2017)] to give an enrichment of stratified Morse theory by the &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline8.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$J$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-homomorphism. This provides a key step in the work of Jin [&lt;span&gt;Microlocal sheaf categories and the&lt;/span&gt; &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline9.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$J$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;&lt;span&gt;-homomorphism&lt;/span&gt;, Preprint (2020), arXiv:2004.14270v4] on the proof of a claim of Jin and Treumann [&lt;span&gt;Brane structures in microlocal sheaf theory&lt;/span&gt;, J. Topol. &lt;span&gt;17&lt;/span&gt; (2024), e12325]: the classifying map of the local system of brane structures on an (immersed) exact Lagrangian submanifold &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline10.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$Lsubset T^*mathbf {R}^N$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; is given by the composition of the stable Gauss map &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline11.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$Lrightarrow U/O$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; and the delooping of the &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912114013531-0464:S0010437X24007279:S0010437X24007279_inline12.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$J$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-homomorphism &lt;sp","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"10 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved algebraic fibrings 改进的代数纤维
IF 1.8 1区 数学 Q1 MATHEMATICS Pub Date : 2024-09-13 DOI: 10.1112/s0010437x24007309
Sam P. Fisher
<p>We show that a virtually residually finite rationally solvable (RFRS) group <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline1.png"><span data-mathjax-type="texmath"><span>$G$</span></span></img></span></span> of type <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline2.png"><span data-mathjax-type="texmath"><span>$mathtt {FP}_n(mathbb {Q})$</span></span></img></span></span> virtually algebraically fibres with kernel of type <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline3.png"><span data-mathjax-type="texmath"><span>$mathtt {FP}_n(mathbb {Q})$</span></span></img></span></span> if and only if the first <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline4.png"><span data-mathjax-type="texmath"><span>$n$</span></span></img></span></span> <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline5.png"><span data-mathjax-type="texmath"><span>$ell ^2$</span></span></img></span></span>-Betti numbers of <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline6.png"><span data-mathjax-type="texmath"><span>$G$</span></span></img></span></span> vanish, that is, <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline7.png"><span data-mathjax-type="texmath"><span>$b_p^{(2)}(G) = 0$</span></span></img></span></span> for <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline8.png"><span data-mathjax-type="texmath"><span>$0 leqslant p leqslant n$</span></span></img></span></span>. This confirms a conjecture of Kielak. We also offer a variant of this result over other fields, in particular in positive characteristic. As an application of the main result, we show that amenable virtually RFRS groups of type <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline9.png"><span data-
我们证明,当且仅当 $G$ 的前 $n$ $ell ^2$ 贝蒂数消失时,$G$ 类型为 $mathtt {FP}_n(mathbb {Q})$的几乎残差有限合理可解(RFRS)群实际上是代数纤维,其核类型为 $mathtt {FP}_n(mathbb {Q})$、也就是说,当 $0 leqslant p leqslant n$ 时,$b_p^{(2)}(G) = 0$。这证实了基拉克的猜想。我们还提供了这一结果在其他域上的变式,特别是在正特征域上。作为主要结果的一个应用,我们证明了类型为 $mathtt {FP}(mathbb {Q})$ 的可调和近似 RFRS 群是近似阿贝尔的。因此,如果 $G$ 是一个类型为 $mathtt {FP}(mathbb {Q})$ 的近似 RFRS 群,并且 $mathbb {Z} $ 是 Noetherian 的,那么 $G$ 就是一个近似 RFRS 群。G$ 是诺特的,那么 $G$ 实际上是阿贝尔的。这证实了贝尔关于类型为 $mathtt {FP}(mathbb {Q})$ 的近似 RFRS 群的猜想,其中包括(例如)近似紧凑特殊群的类。
{"title":"Improved algebraic fibrings","authors":"Sam P. Fisher","doi":"10.1112/s0010437x24007309","DOIUrl":"https://doi.org/10.1112/s0010437x24007309","url":null,"abstract":"&lt;p&gt;We show that a virtually residually finite rationally solvable (RFRS) group &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline1.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$G$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; of type &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline2.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathtt {FP}_n(mathbb {Q})$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; virtually algebraically fibres with kernel of type &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline3.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathtt {FP}_n(mathbb {Q})$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; if and only if the first &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline4.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$n$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline5.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$ell ^2$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-Betti numbers of &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline6.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$G$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; vanish, that is, &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline7.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$b_p^{(2)}(G) = 0$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; for &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline8.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$0 leqslant p leqslant n$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;. This confirms a conjecture of Kielak. We also offer a variant of this result over other fields, in particular in positive characteristic. As an application of the main result, we show that amenable virtually RFRS groups of type &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240911163557241-0452:S0010437X24007309:S0010437X24007309_inline9.png\"&gt;&lt;span data-","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"59 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Gross–Prasad conjecture with its refinement for (SO(5), SO(2)) and the generalized Böcherer conjecture 关于格罗斯-普拉萨德猜想及其对(SO(5), SO(2))的完善和广义伯切尔猜想
IF 1.8 1区 数学 Q1 MATHEMATICS Pub Date : 2024-09-13 DOI: 10.1112/s0010437x24007267
Masaaki Furusawa, Kazuki Morimoto

We investigate the Gross–Prasad conjecture and its refinement for the Bessel periods in the case of $(mathrm {SO}(5), mathrm {SO}(2))$. In particular, by combining several theta correspondences, we prove the Ichino–Ikeda-type formula for any tempered irreducible cuspidal automorphic representation. As a corollary of our formula, we prove an explicit formula relating certain weighted averages of Fourier coefficients of holomorphic Siegel cusp forms of degree two, which are Hecke eigenforms, to central special values of $L$-functions. The formula is regarded as a natural generalization of the Böcherer conjecture to the non-trivial toroidal character case.

我们研究了在 $(mathrm {SO}(5), mathrm {SO}(2))$ 的情况下贝塞尔周期的格罗斯-普拉萨德猜想及其细化。特别是,通过结合几种θ对应关系,我们证明了任何回火不可还原尖顶自形表示的伊奇诺-池田式公式。作为我们公式的一个推论,我们证明了一个明确的公式,它将二度全形西格尔凹凸形式(即赫克特征形式)的某些加权平均傅里叶系数与 $L$ 函数的中心特异值联系起来。该公式被视为伯切尔猜想在非三重环状特征情况下的自然推广。
{"title":"On the Gross–Prasad conjecture with its refinement for (SO(5), SO(2)) and the generalized Böcherer conjecture","authors":"Masaaki Furusawa, Kazuki Morimoto","doi":"10.1112/s0010437x24007267","DOIUrl":"https://doi.org/10.1112/s0010437x24007267","url":null,"abstract":"<p>We investigate the Gross–Prasad conjecture and its refinement for the Bessel periods in the case of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912063150983-0859:S0010437X24007267:S0010437X24007267_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$(mathrm {SO}(5), mathrm {SO}(2))$</span></span></img></span></span>. In particular, by combining several theta correspondences, we prove the Ichino–Ikeda-type formula for any tempered irreducible cuspidal automorphic representation. As a corollary of our formula, we prove an explicit formula relating certain weighted averages of Fourier coefficients of holomorphic Siegel cusp forms of degree two, which are Hecke eigenforms, to central special values of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912063150983-0859:S0010437X24007267:S0010437X24007267_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$L$</span></span></img></span></span>-functions. The formula is regarded as a natural generalization of the Böcherer conjecture to the non-trivial toroidal character case.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"165 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cohomological and motivic inclusion–exclusion 同构和动机包含-排除
IF 1.8 1区 数学 Q1 MATHEMATICS Pub Date : 2024-09-13 DOI: 10.1112/s0010437x24007292
Ronno Das, Sean Howe

We categorify the inclusion–exclusion principle for partially ordered topological spaces and schemes to a filtration on the derived category of sheaves. As a consequence, we obtain functorial spectral sequences that generalize the two spectral sequences of a stratified space and certain Vassiliev-type spectral sequences; we also obtain Euler characteristic analogs in the Grothendieck ring of varieties. As an application, we give an algebro-geometric proof of Vakil and Wood's homological stability conjecture for the space of smooth hypersurface sections of a smooth projective variety. In characteristic zero this conjecture was previously established by Aumonier via topological methods.

我们将部分有序拓扑空间和方案的包含-排除原理归类为剪子派生类的滤波。因此,我们得到了泛化了分层空间的两个谱序列和某些瓦西里耶夫型谱序列的扇形谱序列;我们还得到了格罗内狄克环中的欧拉特征类似物。作为应用,我们给出了瓦基尔和伍德关于光滑投影变种的光滑超曲面部分空间的同调稳定性猜想的几何证明。在零特征中,奥莫尼埃曾通过拓扑方法建立了这一猜想。
{"title":"Cohomological and motivic inclusion–exclusion","authors":"Ronno Das, Sean Howe","doi":"10.1112/s0010437x24007292","DOIUrl":"https://doi.org/10.1112/s0010437x24007292","url":null,"abstract":"<p>We categorify the inclusion–exclusion principle for partially ordered topological spaces and schemes to a filtration on the derived category of sheaves. As a consequence, we obtain functorial spectral sequences that generalize the two spectral sequences of a stratified space and certain Vassiliev-type spectral sequences; we also obtain Euler characteristic analogs in the Grothendieck ring of varieties. As an application, we give an algebro-geometric proof of Vakil and Wood's homological stability conjecture for the space of smooth hypersurface sections of a smooth projective variety. In characteristic zero this conjecture was previously established by Aumonier via topological methods.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"17 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclic base change of cuspidal automorphic representations over function fields 函数域上簕杜鹃自动表征的循环基变化
IF 1.8 1区 数学 Q1 MATHEMATICS Pub Date : 2024-09-11 DOI: 10.1112/s0010437x24007243
Gebhard Böckle, Tony Feng, Michael Harris, Chandrashekhar B. Khare, Jack A. Thorne
<p>Let <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline1.png"><span data-mathjax-type="texmath"><span>$G$</span></span></img></span></span> be a split semisimple group over a global function field <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline2.png"><span data-mathjax-type="texmath"><span>$K$</span></span></img></span></span>. Given a cuspidal automorphic representation <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline3.png"><span data-mathjax-type="texmath"><span>$Pi$</span></span></img></span></span> of <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline4.png"><span data-mathjax-type="texmath"><span>$G$</span></span></img></span></span> satisfying a technical hypothesis, we prove that for almost all primes <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline5.png"><span data-mathjax-type="texmath"><span>$ell$</span></span></img></span></span>, there is a cyclic base change lifting of <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline6.png"><span data-mathjax-type="texmath"><span>$Pi$</span></span></img></span></span> along any <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline7.png"><span data-mathjax-type="texmath"><span>$mathbb {Z}/ell mathbb {Z}$</span></span></img></span></span>-extension of <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline8.png"><span data-mathjax-type="texmath"><span>$K$</span></span></img></span></span>. Our proof does not rely on any trace formulas; instead it is based on using modularity lifting theorems, together with a Smith theory argument, to obtain base change for residual representations. As an application, we also prove that for any split semisimple group <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_in
让 $G$ 是一个全局函数域 $K$ 上的分裂半简单群。给定一个满足技术假设的$G$的尖顶自变表示$Pi$,我们证明对于几乎所有的素数$ell$,沿着$K$的任何$mathbb {Z}/ell mathbb {Z}$-扩展,都存在着$Pi$的循环基变提升。我们的证明并不依赖于任何迹公式;相反,它是基于使用模块性提升定理,再加上斯密理论论证,来获得残差表示的基底变化。作为应用,我们还证明了对于本地函数域 $F 上的任何分裂半简单群 $G$,以及几乎所有素数 $ell$,$G(F)$ 的任何不可还原可容许表示都会沿着 $F$ 的任何 $mathbb {Z}/ell mathbb {Z}$ 扩展发生基底变化。最后,我们更明确地描述了陈和艾的研究中所考虑的一类环状表示的局部基底变化。
{"title":"Cyclic base change of cuspidal automorphic representations over function fields","authors":"Gebhard Böckle, Tony Feng, Michael Harris, Chandrashekhar B. Khare, Jack A. Thorne","doi":"10.1112/s0010437x24007243","DOIUrl":"https://doi.org/10.1112/s0010437x24007243","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline1.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$G$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; be a split semisimple group over a global function field &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline2.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$K$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;. Given a cuspidal automorphic representation &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline3.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$Pi$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; of &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline4.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$G$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; satisfying a technical hypothesis, we prove that for almost all primes &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline5.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$ell$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;, there is a cyclic base change lifting of &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline6.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$Pi$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; along any &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline7.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathbb {Z}/ell mathbb {Z}$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-extension of &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_inline8.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$K$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;. Our proof does not rely on any trace formulas; instead it is based on using modularity lifting theorems, together with a Smith theory argument, to obtain base change for residual representations. As an application, we also prove that for any split semisimple group &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160619904-0480:S0010437X24007243:S0010437X24007243_in","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"149 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The -invariant over splitting fields of Tits algebras 蒂茨代数分裂域上的-不变量
IF 1.8 1区 数学 Q1 MATHEMATICS Pub Date : 2024-09-11 DOI: 10.1112/s0010437x24007255
Maksim Zhykhovich

We describe the $J$-invariant of a semisimple algebraic group $G$ over a generic splitting field of a Tits algebra of $G$ in terms of the $J$-invariant over the base field. As a consequence we prove a 10-year-old conjecture of Quéguiner-Mathieu, Semenov, and Zainoulline on the $J$-invariant of groups of type $mathrm {D}_n$. In the case of type $mathrm {D}_n$ we also provide explicit formulas for the first component and in some cases for the second component of the $J$-invariant.

我们用在基域上的 $J$ 不变式来描述在 $G$ 的 Tits 代数的一般分裂域上的半简代数群 $G$ 的 $J$ 不变式。因此,我们证明了奎吉纳-马蒂厄(Quéguiner-Mathieu)、塞梅诺夫(Semenov)和扎伊努林(Zainoulline)关于$mathrm {D}_n$ 型群的$J$不变量的一个已有 10 年之久的猜想。在$mathrm {D}_n$ 类型的情况下,我们还提供了$J$不变量第一分量的明确公式,在某些情况下还提供了第二分量的明确公式。
{"title":"The -invariant over splitting fields of Tits algebras","authors":"Maksim Zhykhovich","doi":"10.1112/s0010437x24007255","DOIUrl":"https://doi.org/10.1112/s0010437x24007255","url":null,"abstract":"<p>We describe the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155753172-0985:S0010437X24007255:S0010437X24007255_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$J$</span></span></img></span></span>-invariant of a semisimple algebraic group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155753172-0985:S0010437X24007255:S0010437X24007255_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> over a generic splitting field of a Tits algebra of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155753172-0985:S0010437X24007255:S0010437X24007255_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> in terms of the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155753172-0985:S0010437X24007255:S0010437X24007255_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$J$</span></span></img></span></span>-invariant over the base field. As a consequence we prove a 10-year-old conjecture of Quéguiner-Mathieu, Semenov, and Zainoulline on the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155753172-0985:S0010437X24007255:S0010437X24007255_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$J$</span></span></img></span></span>-invariant of groups of type <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155753172-0985:S0010437X24007255:S0010437X24007255_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$mathrm {D}_n$</span></span></img></span></span>. In the case of type <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155753172-0985:S0010437X24007255:S0010437X24007255_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$mathrm {D}_n$</span></span></img></span></span> we also provide explicit formulas for the first component and in some cases for the second component of the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910155753172-0985:S0010437X24007255:S0010437X24007255_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$J$</span></span></img></span></span>-invariant.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"11 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connes fusion of spinors on loop space 环空间上旋子的康恩融合
IF 1.8 1区 数学 Q1 MATHEMATICS Pub Date : 2024-08-27 DOI: 10.1112/s0010437x24007188
Peter Kristel, Konrad Waldorf

The loop space of a string manifold supports an infinite-dimensional Fock space bundle, which is an analog of the spinor bundle on a spin manifold. This spinor bundle on loop space appears in the description of two-dimensional sigma models as the bundle of states over the configuration space of the superstring. We construct a product on this bundle that covers the fusion of loops, i.e. the merging of two loops along a common segment. For this purpose, we exhibit it as a bundle of bimodules over a certain von Neumann algebra bundle, and realize our product fibrewise using the Connes fusion of von Neumann bimodules. Our main technique is to establish novel relations between string structures, loop fusion, and the Connes fusion of Fock spaces. The fusion product on the spinor bundle on loop space was proposed by Stolz and Teichner as part of a programme to explore the relation between generalized cohomology theories, functorial field theories, and index theory. It is related to the pair of pants worldsheet of the superstring, to the extension of the corresponding smooth functorial field theory down to the point, and to a higher-categorical bundle on the underlying string manifold, the stringor bundle.

弦流形的环空间支持一个无限维的福克空间束,它与自旋流形上的自旋束类似。这个环空间上的旋子束在二维西格玛模型的描述中作为超弦配置空间上的状态束出现。我们在这个束上构建了一个乘积,它涵盖了环的融合,即两个环沿着一个共同的线段合并。为此,我们将其展示为某个冯-诺依曼代数束上的双模束,并利用冯-诺依曼双模的康恩融合实现我们的乘积。我们的主要技术是在弦结构、环融合和福克空间的康恩融合之间建立新的关系。环空间旋量束上的融合乘积是斯托尔兹和泰克纳提出的,作为探索广义同调理论、函子场论和索引理论之间关系的计划的一部分。它与超弦的一对裤子世界表、相应的平滑扇形场论向下到点的扩展,以及底层弦流形上的高分类束--弦束相关。
{"title":"Connes fusion of spinors on loop space","authors":"Peter Kristel, Konrad Waldorf","doi":"10.1112/s0010437x24007188","DOIUrl":"https://doi.org/10.1112/s0010437x24007188","url":null,"abstract":"<p>The loop space of a string manifold supports an infinite-dimensional Fock space bundle, which is an analog of the spinor bundle on a spin manifold. This spinor bundle on loop space appears in the description of two-dimensional sigma models as the bundle of states over the configuration space of the superstring. We construct a product on this bundle that covers the fusion of loops, i.e. the merging of two loops along a common segment. For this purpose, we exhibit it as a bundle of bimodules over a certain von Neumann algebra bundle, and realize our product fibrewise using the Connes fusion of von Neumann bimodules. Our main technique is to establish novel relations between string structures, loop fusion, and the Connes fusion of Fock spaces. The fusion product on the spinor bundle on loop space was proposed by Stolz and Teichner as part of a programme to explore the relation between generalized cohomology theories, functorial field theories, and index theory. It is related to the pair of pants worldsheet of the superstring, to the extension of the corresponding smooth functorial field theory down to the point, and to a higher-categorical bundle on the underlying string manifold, the stringor bundle.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BPS invariants from p-adic integrals 从 p-二次积分看 BPS 不变量
IF 1.8 1区 数学 Q1 MATHEMATICS Pub Date : 2024-05-30 DOI: 10.1112/s0010437x24007176
Francesca Carocci, Giulio Orecchia, Dimitri Wyss
<p>We define <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline2.png"><span data-mathjax-type="texmath"><span>$p$</span></span></img></span></span>-adic <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline3.png"><span data-mathjax-type="texmath"><span>$mathrm {BPS}$</span></span></img></span></span> or <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline4.png"><span data-mathjax-type="texmath"><span>$pmathrm {BPS}$</span></span></img></span></span> invariants for moduli spaces <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline5.png"><span data-mathjax-type="texmath"><span>$operatorname {M}_{beta,chi }$</span></span></img></span></span> of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline6.png"><span data-mathjax-type="texmath"><span>$F$</span></span></img></span></span>. Our definition relies on a canonical measure <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline8.png"><span data-mathjax-type="texmath"><span>$mu _{rm can}$</span></span></img></span></span> on the <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline9.png"><span data-mathjax-type="texmath"><span>$F$</span></span></img></span></span>-analytic manifold associated to <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline10.png"><span data-mathjax-type="texmath"><span>$operatorname {M}_{beta,chi }$</span></span></img></span></span> and the <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline11.png"><span data-mathjax-type="texmath"><span>$pmathrm {BPS}$</span></span></img></span></span> invariants are integrals of natural <span><span><img data-mimesubtype="png" data-type="" src=
我们通过对非阿基米德局部场 $F$ 的积分,定义了 del Pezzo 和 K3 曲面上一维剪切的模空间 $operatorname {M}_{beta,chi }$ 的 $p$-adic $mathrm {BPS}$ 或 $pmathrm {BPS}$ 不变量。我们的定义依赖于与 $operatorname {M}_{beta,chi }$ 相关联的 $F$-analytic 流形上的规范度量 $mu _{rm can}$ ,而 $pmathrm {BPS}$ 不变式是自然 ${mathbb {G}}_m$ gerbes 关于 $mu _{rm can}$ 的积分。类似的构造也可以用于曲线上的全形希格斯束和通常希格斯束。我们的主要定理是这些 $pmathrm {BPS}$ 不变量的 $chi$-independence 结果。对于del Pezzo曲面上的一维剪切和全形希格斯束,我们通过Maulik和Shen的一个结果[Cohomological $chi$-independence for moduli of one-dimensional sheaves and moduli of Higgs bundles, Geom.Topol.27 (2023), 1539-1586].
{"title":"BPS invariants from p-adic integrals","authors":"Francesca Carocci, Giulio Orecchia, Dimitri Wyss","doi":"10.1112/s0010437x24007176","DOIUrl":"https://doi.org/10.1112/s0010437x24007176","url":null,"abstract":"&lt;p&gt;We define &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline2.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$p$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-adic &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline3.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathrm {BPS}$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; or &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline4.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$pmathrm {BPS}$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; invariants for moduli spaces &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline5.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$operatorname {M}_{beta,chi }$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline6.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$F$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;. Our definition relies on a canonical measure &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline8.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mu _{rm can}$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; on the &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline9.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$F$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-analytic manifold associated to &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline10.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$operatorname {M}_{beta,chi }$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; and the &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline11.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$pmathrm {BPS}$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; invariants are integrals of natural &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"19 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141195412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2 n2-inequality for cA1 points and applications to birational rigidity 2 cA1点的n2-不等式及其在双刚性中的应用
IF 1.8 1区 数学 Q1 MATHEMATICS Pub Date : 2024-05-29 DOI: 10.1112/s0010437x24007164
Igor Krylov, Takuzo Okada, Erik Paemurru, Jihun Park
<p>The <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline3.png"><span data-mathjax-type="texmath"><span>$4 n^2$</span></span></img></span></span>-inequality for smooth points plays an important role in the proofs of birational (super)rigidity. The main aim of this paper is to generalize such an inequality to terminal singular points of type <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline4.png"><span data-mathjax-type="texmath"><span>$cA_1$</span></span></img></span></span>, and obtain a <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline5.png"><span data-mathjax-type="texmath"><span>$2 n^2$</span></span></img></span></span>-inequality for <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline6.png"><span data-mathjax-type="texmath"><span>$cA_1$</span></span></img></span></span> points. As applications, we prove birational (super)rigidity of sextic double solids, many other prime Fano 3-fold weighted complete intersections, and del Pezzo fibrations of degree <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline7.png"><span data-mathjax-type="texmath"><span>$1$</span></span></img></span></span> over <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline8.png"><span data-mathjax-type="texmath"><span>$mathbb {P}^1$</span></span></img></span></span> satisfying the <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline9.png"><span data-mathjax-type="texmath"><span>$K^2$</span></span></img></span></span>-condition, all of which have at most terminal <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline10.png"><span data-mathjax-type="texmath"><span>$cA_1$</span></span></img></span></span> singularities and terminal quotient singularities. These give first examples of birationally (super)rigid Fano 3-folds and del Pezzo fibrations admitting a <span><span><img data-mimesubtype="png" data-type="" src="https://s
光滑点的 $4 n^2$ 不等式在双(超)刚性证明中起着重要作用。本文的主要目的是将这种不等式推广到 $cA_1$ 类型的末端奇异点,并获得 $cA_1$ 点的 $2 n^2$ 不等式。作为应用,我们证明了六元双实体、许多其他素数法诺 3 折叠加权完全交集以及满足 $K^2$ 条件的 $mathbb {P}^1$ 上 1$ 度的 del Pezzo 纤 维的双向(超)刚性,所有这些都最多有末端的 $cA_1$ 奇点和末端的商奇点。这些给出了双向(超)刚性法诺 3 折叠和德尔佩佐纤维的第一个例子,其中的 $cA_1$ 点不是普通的双点。
{"title":"2 n2-inequality for cA1 points and applications to birational rigidity","authors":"Igor Krylov, Takuzo Okada, Erik Paemurru, Jihun Park","doi":"10.1112/s0010437x24007164","DOIUrl":"https://doi.org/10.1112/s0010437x24007164","url":null,"abstract":"&lt;p&gt;The &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline3.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$4 n^2$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-inequality for smooth points plays an important role in the proofs of birational (super)rigidity. The main aim of this paper is to generalize such an inequality to terminal singular points of type &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline4.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$cA_1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;, and obtain a &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline5.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$2 n^2$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-inequality for &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline6.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$cA_1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; points. As applications, we prove birational (super)rigidity of sextic double solids, many other prime Fano 3-fold weighted complete intersections, and del Pezzo fibrations of degree &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline7.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; over &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline8.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathbb {P}^1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; satisfying the &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline9.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$K^2$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-condition, all of which have at most terminal &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline10.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$cA_1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; singularities and terminal quotient singularities. These give first examples of birationally (super)rigid Fano 3-folds and del Pezzo fibrations admitting a &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://s","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"70 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A geometric p-adic Simpson correspondence in rank one 一阶几何 p-adic Simpson 对应关系
IF 1.8 1区 数学 Q1 MATHEMATICS Pub Date : 2024-05-21 DOI: 10.1112/s0010437x24007024
Ben Heuer
<p>For any smooth proper rigid space <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline2.png"><span data-mathjax-type="texmath"><span>$X$</span></span></img></span></span> over a complete algebraically closed extension <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline3.png"><span data-mathjax-type="texmath"><span>$K$</span></span></img></span></span> of <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline4.png"><span data-mathjax-type="texmath"><span>$mathbb {Q}_p$</span></span></img></span></span> we give a geometrisation of the <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline5.png"><span data-mathjax-type="texmath"><span>$p$</span></span></img></span></span>-adic Simpson correspondence of rank one in terms of analytic moduli spaces: the <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline6.png"><span data-mathjax-type="texmath"><span>$p$</span></span></img></span></span>-adic character variety is canonically an étale twist of the moduli space of topologically torsion Higgs line bundles over the Hitchin base. This also eliminates the choice of an exponential. The key idea is to relate both sides to moduli spaces of <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline7.png"><span data-mathjax-type="texmath"><span>$v$</span></span></img></span></span>-line bundles. As an application, we study a major open question in <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline8.png"><span data-mathjax-type="texmath"><span>$p$</span></span></img></span></span>-adic non-abelian Hodge theory raised by Faltings, namely which Higgs bundles correspond to continuous representations under the <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline9.png"><span data-mathjax-type="texmath"><span>$p$</span></span></img></span></span>-adic Simpson correspondence. We answer this question in rank one by describing the
对于在$mathbb {Q}_p$ 的完整代数封闭扩展$K$上的任何光滑适当刚性空间$X$,我们给出了秩为一的$p$-adic Simpson对应的解析模空间的几何解析:$p$-adic character variety典型地是希钦基上拓扑扭转希格斯线束的模空间的褶曲。这也消除了指数的选择。关键的思路是把两边都与 $v$ 线束的模空间联系起来。作为应用,我们研究了法尔廷斯提出的p$-adic非阿贝尔霍奇理论中的一个主要未决问题,即哪些希格斯束对应于p$-adic辛普森对应下的连续表示。我们通过描述连续字符 $pi ^{mathrm {acute {e}t}}_1(X)to K^times$ 在模空间方面的本质映像来回答这个问题:对于在 $K=mathbb {C}_p$ 上的投影 $X$,它是由希格斯线束给出的,就像复几何学中的奇恩类消失一样。然而,一般来说,正确的条件是更严格的假设,即底层线束是拓扑群 $operatorname {Pic}(X)$ 中的拓扑扭转元素。
{"title":"A geometric p-adic Simpson correspondence in rank one","authors":"Ben Heuer","doi":"10.1112/s0010437x24007024","DOIUrl":"https://doi.org/10.1112/s0010437x24007024","url":null,"abstract":"&lt;p&gt;For any smooth proper rigid space &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline2.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$X$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; over a complete algebraically closed extension &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline3.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$K$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; of &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline4.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathbb {Q}_p$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; we give a geometrisation of the &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline5.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$p$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-adic Simpson correspondence of rank one in terms of analytic moduli spaces: the &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline6.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$p$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-adic character variety is canonically an étale twist of the moduli space of topologically torsion Higgs line bundles over the Hitchin base. This also eliminates the choice of an exponential. The key idea is to relate both sides to moduli spaces of &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline7.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$v$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-line bundles. As an application, we study a major open question in &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline8.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$p$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-adic non-abelian Hodge theory raised by Faltings, namely which Higgs bundles correspond to continuous representations under the &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240520155950870-0374:S0010437X24007024:S0010437X24007024_inline9.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$p$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-adic Simpson correspondence. We answer this question in rank one by describing the ","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"61 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141153115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Compositio Mathematica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1