Runar L. Berge, Inga Berre, Eirik Keilegavlen, Jan M. Nordbotten
{"title":"断裂多孔介质中粘性起毛的数值模拟","authors":"Runar L. Berge, Inga Berre, Eirik Keilegavlen, Jan M. Nordbotten","doi":"10.1007/s11242-024-02081-0","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of heterogeneity induced by highly permeable fracture networks on viscous miscible fingering in porous media is examined using high-resolution numerical simulations. We consider the planar injection of a less viscous fluid into a two-dimensional fractured porous medium that is saturated with a more viscous fluid. This problem contains two sets of fundamentally different preferential flow regimes; the first is caused by the viscous fingering, and the second is due to the permeability contrasts between the fractures and the rock matrix. We study the transition from the regime where the flow is dominated by the viscous instabilities, to the regime where the heterogeneity induced by the fractures define the flow paths. Our findings reveal that even minor permeability differences between the rock matrix and fractures significantly influence the behavior of viscous fingering. The interplay between the viscosity contrast and permeability contrast leads to the preferential channeling of the less viscous fluid through the fractures. Consequently, this channeling process stabilizes the displacement front within the rock matrix, ultimately suppressing the occurrence of viscous fingering, particularly for higher permeability contrasts. We explore three fracture geometries: two structured and one random configuration and identify a complex interaction between these geometries and the development of unstable flow. While we find that the most important factor determining the effect of the fracture network is the ratio of fluid volume flowing through the fractures and the rock matrix, the exact point for the cross-over regime is dependent on the geometry of the fracture network.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 7","pages":"1511 - 1538"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02081-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulations of Viscous Fingering in Fractured Porous Media\",\"authors\":\"Runar L. Berge, Inga Berre, Eirik Keilegavlen, Jan M. Nordbotten\",\"doi\":\"10.1007/s11242-024-02081-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effect of heterogeneity induced by highly permeable fracture networks on viscous miscible fingering in porous media is examined using high-resolution numerical simulations. We consider the planar injection of a less viscous fluid into a two-dimensional fractured porous medium that is saturated with a more viscous fluid. This problem contains two sets of fundamentally different preferential flow regimes; the first is caused by the viscous fingering, and the second is due to the permeability contrasts between the fractures and the rock matrix. We study the transition from the regime where the flow is dominated by the viscous instabilities, to the regime where the heterogeneity induced by the fractures define the flow paths. Our findings reveal that even minor permeability differences between the rock matrix and fractures significantly influence the behavior of viscous fingering. The interplay between the viscosity contrast and permeability contrast leads to the preferential channeling of the less viscous fluid through the fractures. Consequently, this channeling process stabilizes the displacement front within the rock matrix, ultimately suppressing the occurrence of viscous fingering, particularly for higher permeability contrasts. We explore three fracture geometries: two structured and one random configuration and identify a complex interaction between these geometries and the development of unstable flow. While we find that the most important factor determining the effect of the fracture network is the ratio of fluid volume flowing through the fractures and the rock matrix, the exact point for the cross-over regime is dependent on the geometry of the fracture network.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":\"151 7\",\"pages\":\"1511 - 1538\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11242-024-02081-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-024-02081-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02081-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Numerical Simulations of Viscous Fingering in Fractured Porous Media
The effect of heterogeneity induced by highly permeable fracture networks on viscous miscible fingering in porous media is examined using high-resolution numerical simulations. We consider the planar injection of a less viscous fluid into a two-dimensional fractured porous medium that is saturated with a more viscous fluid. This problem contains two sets of fundamentally different preferential flow regimes; the first is caused by the viscous fingering, and the second is due to the permeability contrasts between the fractures and the rock matrix. We study the transition from the regime where the flow is dominated by the viscous instabilities, to the regime where the heterogeneity induced by the fractures define the flow paths. Our findings reveal that even minor permeability differences between the rock matrix and fractures significantly influence the behavior of viscous fingering. The interplay between the viscosity contrast and permeability contrast leads to the preferential channeling of the less viscous fluid through the fractures. Consequently, this channeling process stabilizes the displacement front within the rock matrix, ultimately suppressing the occurrence of viscous fingering, particularly for higher permeability contrasts. We explore three fracture geometries: two structured and one random configuration and identify a complex interaction between these geometries and the development of unstable flow. While we find that the most important factor determining the effect of the fracture network is the ratio of fluid volume flowing through the fractures and the rock matrix, the exact point for the cross-over regime is dependent on the geometry of the fracture network.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).