{"title":"热管辅助柔性传热装置的实验分析","authors":"Kannan Pandi, V. M. Jaganathan","doi":"10.1007/s00231-024-03475-y","DOIUrl":null,"url":null,"abstract":"<p>The present study elucidates the experimental investigations on a novel flexible heat transfer device that can be used in a wide range of modern electronic device cooling applications which demand flexibility. The objective of the present is to address the challenges encountered by current flexible heat transfer devices, including concerns related to out-gassing and the permeation of non-condensable gases. These issues ultimately contribute to the deterioration of the long-term dependability of such devices. The present study provides an analysis of the steady-state performance of the flexible heat transfer device under various heat loads and orientations (0°, 45°, and 90° angles). Using COMSOL Multiphysics 6.1, numerical simulations are performed to explain the dynamics of heat transfer of the flexible heat transfer device developed. The performance is evaluated in terms of thermal resistance, equivalent thermal conductivity, and average temperature difference across the evaporator and condenser. Under steady-state operation, it has been determined that the flexible heat transfer device exhibits a minimum thermal resistance of 2.3 °C/W. Additionally, a maximum effective thermal conductivity of 2407 W/mK has been reported for a bending angle of 45°, which is six times more than relevant flexible heat transfer devices, such as copper thermal straps.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental analysis of a heat pipe-assisted flexible heat transfer device\",\"authors\":\"Kannan Pandi, V. M. Jaganathan\",\"doi\":\"10.1007/s00231-024-03475-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study elucidates the experimental investigations on a novel flexible heat transfer device that can be used in a wide range of modern electronic device cooling applications which demand flexibility. The objective of the present is to address the challenges encountered by current flexible heat transfer devices, including concerns related to out-gassing and the permeation of non-condensable gases. These issues ultimately contribute to the deterioration of the long-term dependability of such devices. The present study provides an analysis of the steady-state performance of the flexible heat transfer device under various heat loads and orientations (0°, 45°, and 90° angles). Using COMSOL Multiphysics 6.1, numerical simulations are performed to explain the dynamics of heat transfer of the flexible heat transfer device developed. The performance is evaluated in terms of thermal resistance, equivalent thermal conductivity, and average temperature difference across the evaporator and condenser. Under steady-state operation, it has been determined that the flexible heat transfer device exhibits a minimum thermal resistance of 2.3 °C/W. Additionally, a maximum effective thermal conductivity of 2407 W/mK has been reported for a bending angle of 45°, which is six times more than relevant flexible heat transfer devices, such as copper thermal straps.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00231-024-03475-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00231-024-03475-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental analysis of a heat pipe-assisted flexible heat transfer device
The present study elucidates the experimental investigations on a novel flexible heat transfer device that can be used in a wide range of modern electronic device cooling applications which demand flexibility. The objective of the present is to address the challenges encountered by current flexible heat transfer devices, including concerns related to out-gassing and the permeation of non-condensable gases. These issues ultimately contribute to the deterioration of the long-term dependability of such devices. The present study provides an analysis of the steady-state performance of the flexible heat transfer device under various heat loads and orientations (0°, 45°, and 90° angles). Using COMSOL Multiphysics 6.1, numerical simulations are performed to explain the dynamics of heat transfer of the flexible heat transfer device developed. The performance is evaluated in terms of thermal resistance, equivalent thermal conductivity, and average temperature difference across the evaporator and condenser. Under steady-state operation, it has been determined that the flexible heat transfer device exhibits a minimum thermal resistance of 2.3 °C/W. Additionally, a maximum effective thermal conductivity of 2407 W/mK has been reported for a bending angle of 45°, which is six times more than relevant flexible heat transfer devices, such as copper thermal straps.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.