瓦瑟斯坦虫洞利用变压器实现可扩展的最佳传输距离

Doron Haviv, Russell Zhang Kunes, Thomas Dougherty, Cassandra Burdziak, Tal Nawy, Anna Gilbert, Dana Pe'er
{"title":"瓦瑟斯坦虫洞利用变压器实现可扩展的最佳传输距离","authors":"Doron Haviv, Russell Zhang Kunes, Thomas Dougherty, Cassandra Burdziak, Tal Nawy, Anna Gilbert, Dana Pe'er","doi":"arxiv-2404.09411","DOIUrl":null,"url":null,"abstract":"Optimal transport (OT) and the related Wasserstein metric (W) are powerful\nand ubiquitous tools for comparing distributions. However, computing pairwise\nWasserstein distances rapidly becomes intractable as cohort size grows. An\nattractive alternative would be to find an embedding space in which pairwise\nEuclidean distances map to OT distances, akin to standard multidimensional\nscaling (MDS). We present Wasserstein Wormhole, a transformer-based autoencoder\nthat embeds empirical distributions into a latent space wherein Euclidean\ndistances approximate OT distances. Extending MDS theory, we show that our\nobjective function implies a bound on the error incurred when embedding\nnon-Euclidean distances. Empirically, distances between Wormhole embeddings\nclosely match Wasserstein distances, enabling linear time computation of OT\ndistances. Along with an encoder that maps distributions to embeddings,\nWasserstein Wormhole includes a decoder that maps embeddings back to\ndistributions, allowing for operations in the embedding space to generalize to\nOT spaces, such as Wasserstein barycenter estimation and OT interpolation. By\nlending scalability and interpretability to OT approaches, Wasserstein Wormhole\nunlocks new avenues for data analysis in the fields of computational geometry\nand single-cell biology.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wasserstein Wormhole: Scalable Optimal Transport Distance with Transformers\",\"authors\":\"Doron Haviv, Russell Zhang Kunes, Thomas Dougherty, Cassandra Burdziak, Tal Nawy, Anna Gilbert, Dana Pe'er\",\"doi\":\"arxiv-2404.09411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal transport (OT) and the related Wasserstein metric (W) are powerful\\nand ubiquitous tools for comparing distributions. However, computing pairwise\\nWasserstein distances rapidly becomes intractable as cohort size grows. An\\nattractive alternative would be to find an embedding space in which pairwise\\nEuclidean distances map to OT distances, akin to standard multidimensional\\nscaling (MDS). We present Wasserstein Wormhole, a transformer-based autoencoder\\nthat embeds empirical distributions into a latent space wherein Euclidean\\ndistances approximate OT distances. Extending MDS theory, we show that our\\nobjective function implies a bound on the error incurred when embedding\\nnon-Euclidean distances. Empirically, distances between Wormhole embeddings\\nclosely match Wasserstein distances, enabling linear time computation of OT\\ndistances. Along with an encoder that maps distributions to embeddings,\\nWasserstein Wormhole includes a decoder that maps embeddings back to\\ndistributions, allowing for operations in the embedding space to generalize to\\nOT spaces, such as Wasserstein barycenter estimation and OT interpolation. By\\nlending scalability and interpretability to OT approaches, Wasserstein Wormhole\\nunlocks new avenues for data analysis in the fields of computational geometry\\nand single-cell biology.\",\"PeriodicalId\":501070,\"journal\":{\"name\":\"arXiv - QuanBio - Genomics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.09411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.09411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最优传输(OT)和相关的瓦瑟斯坦度量(W)是比较分布的强大而普遍的工具。然而,随着队列规模的扩大,计算成对的 Wasserstein 距离很快就变得难以处理。一个有吸引力的替代方法是找到一个嵌入空间,在这个空间中,成对欧氏距离映射到 OT 距离,类似于标准多维尺度(MDS)。我们提出的 Wasserstein Wormhole 是一种基于变换器的自动编码器,它能将经验分布嵌入到欧氏距离近似于加时赛距离的潜在空间中。通过扩展 MDS 理论,我们证明了目标函数意味着嵌入非欧几里得距离时产生的误差约束。从经验上看,虫洞嵌入之间的距离与瓦瑟斯坦距离非常接近,因此可以在线性时间内计算 OT 距离。除了将分布映射到嵌入的编码器之外,Wasserstein Wormhole 还包括一个将嵌入映射回分布的解码器,使得嵌入空间中的操作可以推广到 OT 空间,例如 Wasserstein barycenter 估计和 OT 插值。Wasserstein Wormhole 将可扩展性和可解释性赋予 OT 方法,为计算几何和单细胞生物学领域的数据分析开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wasserstein Wormhole: Scalable Optimal Transport Distance with Transformers
Optimal transport (OT) and the related Wasserstein metric (W) are powerful and ubiquitous tools for comparing distributions. However, computing pairwise Wasserstein distances rapidly becomes intractable as cohort size grows. An attractive alternative would be to find an embedding space in which pairwise Euclidean distances map to OT distances, akin to standard multidimensional scaling (MDS). We present Wasserstein Wormhole, a transformer-based autoencoder that embeds empirical distributions into a latent space wherein Euclidean distances approximate OT distances. Extending MDS theory, we show that our objective function implies a bound on the error incurred when embedding non-Euclidean distances. Empirically, distances between Wormhole embeddings closely match Wasserstein distances, enabling linear time computation of OT distances. Along with an encoder that maps distributions to embeddings, Wasserstein Wormhole includes a decoder that maps embeddings back to distributions, allowing for operations in the embedding space to generalize to OT spaces, such as Wasserstein barycenter estimation and OT interpolation. By lending scalability and interpretability to OT approaches, Wasserstein Wormhole unlocks new avenues for data analysis in the fields of computational geometry and single-cell biology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Allium Vegetables Intake and Digestive System Cancer Risk: A Study Based on Mendelian Randomization, Network Pharmacology and Molecular Docking wgatools: an ultrafast toolkit for manipulating whole genome alignments Selecting Differential Splicing Methods: Practical Considerations Advancements in colored k-mer sets: essentials for the curious Advancements in practical k-mer sets: essentials for the curious
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1