通过微培系统提高茉莉花(Apocynaceae,Asclepiadoideae)离体小芽的生根能力

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-16 DOI:10.1007/s11240-024-02753-1
Hoang Thanh Tung, Nguyen Thi Nhu Mai, Do Manh Cuong, Nguyen Ba Nam, Trinh Thi Huy Tra, Hoang Ngoc Han, Nguyen Tran Vu, Ha Thi My Ngan, Bui Van The Vinh, Duong Tan Nhut
{"title":"通过微培系统提高茉莉花(Apocynaceae,Asclepiadoideae)离体小芽的生根能力","authors":"Hoang Thanh Tung, Nguyen Thi Nhu Mai, Do Manh Cuong, Nguyen Ba Nam, Trinh Thi Huy Tra, Hoang Ngoc Han, Nguyen Tran Vu, Ha Thi My Ngan, Bui Van The Vinh, Duong Tan Nhut","doi":"10.1007/s11240-024-02753-1","DOIUrl":null,"url":null,"abstract":"<p>A microponic system (MP system), a propagation system combines micropropagation and hydroponic that, has been studied on some flower and fruit plants; however, the MP system has not yet been tested on herbal plants, especially <i>Jasminanthes tuyetanhiae</i> (Apocynaceae, Asclepiadoideae). This study used the MP system with nylon film (A4 cover nylon) to evaluate rooting, abnormal developmental phenomena, antioxidant enzyme activities, secondary metabolites of plantlets, and subsequent growth. Results showed that 2-cm shoots cultured on a micropropagation system obtained a rooting rate of about 50–60%, and plantlets recorded abnormal phenomena reaching 85% consisting of 22.33% vitrification, 19.33% leaf abscission, 43.33% callus at the root and only 15% plantlets without abnormalities. In contrast, the MP system pre-treated with 0.5 mg/L indole butyric acid (IBA) and supplemented with 4 mg/L silver nanoparticles (AgNPs) obtained 100% rooting and improved plantlet quality. Furthermore, the plantlets developed using the MP system recorded a 2-fold reduction in vitrification and leaf abscission compared to those using the micropropagation system. A reduction in callus formation and increased antioxidant activities were also noted. The acclimatization of plantlets derived from the MP system pre-treated with 0.5 g/L IBA and 4.0 g/L AgNPs was higher than the conventional treatments.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced rooting in in vitro derived shootlets of Jasminanthes tuyetanhiae T.B. Tran & Rodda (Apocynaceae, Asclepiadoideae) through microponic system\",\"authors\":\"Hoang Thanh Tung, Nguyen Thi Nhu Mai, Do Manh Cuong, Nguyen Ba Nam, Trinh Thi Huy Tra, Hoang Ngoc Han, Nguyen Tran Vu, Ha Thi My Ngan, Bui Van The Vinh, Duong Tan Nhut\",\"doi\":\"10.1007/s11240-024-02753-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A microponic system (MP system), a propagation system combines micropropagation and hydroponic that, has been studied on some flower and fruit plants; however, the MP system has not yet been tested on herbal plants, especially <i>Jasminanthes tuyetanhiae</i> (Apocynaceae, Asclepiadoideae). This study used the MP system with nylon film (A4 cover nylon) to evaluate rooting, abnormal developmental phenomena, antioxidant enzyme activities, secondary metabolites of plantlets, and subsequent growth. Results showed that 2-cm shoots cultured on a micropropagation system obtained a rooting rate of about 50–60%, and plantlets recorded abnormal phenomena reaching 85% consisting of 22.33% vitrification, 19.33% leaf abscission, 43.33% callus at the root and only 15% plantlets without abnormalities. In contrast, the MP system pre-treated with 0.5 mg/L indole butyric acid (IBA) and supplemented with 4 mg/L silver nanoparticles (AgNPs) obtained 100% rooting and improved plantlet quality. Furthermore, the plantlets developed using the MP system recorded a 2-fold reduction in vitrification and leaf abscission compared to those using the micropropagation system. A reduction in callus formation and increased antioxidant activities were also noted. The acclimatization of plantlets derived from the MP system pre-treated with 0.5 g/L IBA and 4.0 g/L AgNPs was higher than the conventional treatments.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11240-024-02753-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02753-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

微培系统(MP 系统)是微繁殖与水培相结合的繁殖系统,已在一些花卉和水果植物上进行过研究;但 MP 系统尚未在草本植物上进行过测试,尤其是土洋茉莉(天南星科,Asclepiadoideae)。本研究利用带有尼龙薄膜(A4 覆盖尼龙)的 MP 系统对生根、异常发育现象、抗氧化酶活性、小植株的次生代谢物以及后续生长进行了评估。结果表明,在微繁殖系统上培养的 2 厘米嫩枝的生根率约为 50-60%,小植株的异常现象达到 85%,其中玻璃化现象占 22.33%,叶片脱落占 19.33%,根部结茧占 43.33%,只有 15%的小植株没有异常现象。相比之下,用 0.5 毫克/升吲哚丁酸(IBA)预处理并辅以 4 毫克/升纳米银颗粒(AgNPs)的 MP 系统获得了 100% 的生根率和更好的小苗质量。此外,使用 MP 系统培育的小植株与使用微繁殖系统培育的小植株相比,玻璃化和叶片脱落的情况减少了 2 倍。胼胝体形成减少,抗氧化活性提高。经 0.5 克/升 IBA 和 4.0 克/升 AgNPs 预处理的 MP 系统产生的小植株的适应性高于常规处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced rooting in in vitro derived shootlets of Jasminanthes tuyetanhiae T.B. Tran & Rodda (Apocynaceae, Asclepiadoideae) through microponic system

A microponic system (MP system), a propagation system combines micropropagation and hydroponic that, has been studied on some flower and fruit plants; however, the MP system has not yet been tested on herbal plants, especially Jasminanthes tuyetanhiae (Apocynaceae, Asclepiadoideae). This study used the MP system with nylon film (A4 cover nylon) to evaluate rooting, abnormal developmental phenomena, antioxidant enzyme activities, secondary metabolites of plantlets, and subsequent growth. Results showed that 2-cm shoots cultured on a micropropagation system obtained a rooting rate of about 50–60%, and plantlets recorded abnormal phenomena reaching 85% consisting of 22.33% vitrification, 19.33% leaf abscission, 43.33% callus at the root and only 15% plantlets without abnormalities. In contrast, the MP system pre-treated with 0.5 mg/L indole butyric acid (IBA) and supplemented with 4 mg/L silver nanoparticles (AgNPs) obtained 100% rooting and improved plantlet quality. Furthermore, the plantlets developed using the MP system recorded a 2-fold reduction in vitrification and leaf abscission compared to those using the micropropagation system. A reduction in callus formation and increased antioxidant activities were also noted. The acclimatization of plantlets derived from the MP system pre-treated with 0.5 g/L IBA and 4.0 g/L AgNPs was higher than the conventional treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1