Cordula P. Haupt, Christian J. Renggli, Arno Rohrbach, Jasper Berndt, Sabrina Schwinger, Maxime Maurice, Maximilian Schulze, Doris Breuer, Stephan Klemme
{"title":"月球岩浆海洋中的微量元素分配:实验研究","authors":"Cordula P. Haupt, Christian J. Renggli, Arno Rohrbach, Jasper Berndt, Sabrina Schwinger, Maxime Maurice, Maximilian Schulze, Doris Breuer, Stephan Klemme","doi":"10.1007/s00410-024-02118-z","DOIUrl":null,"url":null,"abstract":"<div><p>Modeling the behavior of trace elements during lunar magma ocean solidification is important to further our understanding of the chemical evolution of the Moon. Lunar magma ocean evolution models rely on consistent datasets on how trace elements partition between a lunar silicate melt and coexisting minerals at different pressures, temperatures, and redox conditions. Here we report new experimental trace element partition coefficients (D) between clinopyroxene (cpx), pigeonite, orthopyroxene, plagioclase, olivine (ol), and silicate melt at conditions relevant for the lunar magma ocean. The data include D<sup>cpx−melt</sup> at ambient and high pressures (1.5 GPa and 1310 °C), and partition coefficients at ambient pressure for pig, opx, ol, and pl. Overall, clinopyroxene is a phase that may control the fractionation of key geochemical trace element ratios, such as Lu/Hf and Sm/Nd, during the evolution of the lunar magma ocean. We explore the impact of the new silicate D<sup>mineral−melt</sup> on the trace element evolution of the lunar magma ocean and we find that accessory phosphate minerals, such as apatite or whitlockite are of critical importance to explain the observed trace element and isotopic signature of the KREEP reservoir on the Moon. The new partition coefficients were applied to calculate the trace element evolution of the residual melts of the crystallizing lunar magma ocean and we propose a new trace element composition for the urKREEP reservoir. The new data will be useful for future thermo-chemical models in order to adequately predict the duration of the lunar magma ocean and the age of the Moon.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-024-02118-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Trace element partitioning in the lunar magma ocean: an experimental study\",\"authors\":\"Cordula P. Haupt, Christian J. Renggli, Arno Rohrbach, Jasper Berndt, Sabrina Schwinger, Maxime Maurice, Maximilian Schulze, Doris Breuer, Stephan Klemme\",\"doi\":\"10.1007/s00410-024-02118-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modeling the behavior of trace elements during lunar magma ocean solidification is important to further our understanding of the chemical evolution of the Moon. Lunar magma ocean evolution models rely on consistent datasets on how trace elements partition between a lunar silicate melt and coexisting minerals at different pressures, temperatures, and redox conditions. Here we report new experimental trace element partition coefficients (D) between clinopyroxene (cpx), pigeonite, orthopyroxene, plagioclase, olivine (ol), and silicate melt at conditions relevant for the lunar magma ocean. The data include D<sup>cpx−melt</sup> at ambient and high pressures (1.5 GPa and 1310 °C), and partition coefficients at ambient pressure for pig, opx, ol, and pl. Overall, clinopyroxene is a phase that may control the fractionation of key geochemical trace element ratios, such as Lu/Hf and Sm/Nd, during the evolution of the lunar magma ocean. We explore the impact of the new silicate D<sup>mineral−melt</sup> on the trace element evolution of the lunar magma ocean and we find that accessory phosphate minerals, such as apatite or whitlockite are of critical importance to explain the observed trace element and isotopic signature of the KREEP reservoir on the Moon. The new partition coefficients were applied to calculate the trace element evolution of the residual melts of the crystallizing lunar magma ocean and we propose a new trace element composition for the urKREEP reservoir. The new data will be useful for future thermo-chemical models in order to adequately predict the duration of the lunar magma ocean and the age of the Moon.</p></div>\",\"PeriodicalId\":526,\"journal\":{\"name\":\"Contributions to Mineralogy and Petrology\",\"volume\":\"179 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00410-024-02118-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00410-024-02118-z\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02118-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Trace element partitioning in the lunar magma ocean: an experimental study
Modeling the behavior of trace elements during lunar magma ocean solidification is important to further our understanding of the chemical evolution of the Moon. Lunar magma ocean evolution models rely on consistent datasets on how trace elements partition between a lunar silicate melt and coexisting minerals at different pressures, temperatures, and redox conditions. Here we report new experimental trace element partition coefficients (D) between clinopyroxene (cpx), pigeonite, orthopyroxene, plagioclase, olivine (ol), and silicate melt at conditions relevant for the lunar magma ocean. The data include Dcpx−melt at ambient and high pressures (1.5 GPa and 1310 °C), and partition coefficients at ambient pressure for pig, opx, ol, and pl. Overall, clinopyroxene is a phase that may control the fractionation of key geochemical trace element ratios, such as Lu/Hf and Sm/Nd, during the evolution of the lunar magma ocean. We explore the impact of the new silicate Dmineral−melt on the trace element evolution of the lunar magma ocean and we find that accessory phosphate minerals, such as apatite or whitlockite are of critical importance to explain the observed trace element and isotopic signature of the KREEP reservoir on the Moon. The new partition coefficients were applied to calculate the trace element evolution of the residual melts of the crystallizing lunar magma ocean and we propose a new trace element composition for the urKREEP reservoir. The new data will be useful for future thermo-chemical models in order to adequately predict the duration of the lunar magma ocean and the age of the Moon.
期刊介绍:
Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy.
Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.