{"title":"作为治疗癌症先导分子的番茄红素及其利用体外培养技术进行生物合成的策略","authors":"Saikat Sena, Harmeet Kaur, Vijay Kumar","doi":"10.1007/s11101-024-09941-z","DOIUrl":null,"url":null,"abstract":"<p>Medicinal plants are used by many of the global population because they are safe and effective alternative to other treatments. Over the last few decades, using plant cells to produce natural or recombinant chemicals of economic interest has become a great intention. Secondary metabolites are recognized to have a significant role in plant adaptation to their environment and are also a valuable source of medication. The increasing economic importance of secondary metabolites has recently sparked a lot of interest in biotransformation, particularly in using tissue culture techniques to modify the production of bioactive plant metabolites. Plants of the family Amaryllidaceae have been used to extract several different alkaloids, each of which has the potential to be involved in a variety of pharmacological processes. Due to its multiple biological functions and divergent structure, lycorine has received significant interest in the medicinal field. Lycorine and other alkaloids from the Amaryllidaceae family have limited bioavailability by nature. In vitro culture provides an alternate method for producing lycorine sustainably due to the pharmaceutical industries dramatically increasing demand for it and the insufficient availability of natural resources. Many medicinal plants have been reported to produce lycorine in vitro in plant cell suspension cultures, and bioreactors play an effective role in their commercial production. This article focuses on the production of lycorine in in vitro systems from plants and its potential in the treatment of cancer. This study also aims to provide different biotechnological strategies for the production of this important alkaloid using in vitro system.</p>","PeriodicalId":733,"journal":{"name":"Phytochemistry Reviews","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lycorine as a lead molecule in the treatment of cancer and strategies for its biosynthesis using the in vitro culture technique\",\"authors\":\"Saikat Sena, Harmeet Kaur, Vijay Kumar\",\"doi\":\"10.1007/s11101-024-09941-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Medicinal plants are used by many of the global population because they are safe and effective alternative to other treatments. Over the last few decades, using plant cells to produce natural or recombinant chemicals of economic interest has become a great intention. Secondary metabolites are recognized to have a significant role in plant adaptation to their environment and are also a valuable source of medication. The increasing economic importance of secondary metabolites has recently sparked a lot of interest in biotransformation, particularly in using tissue culture techniques to modify the production of bioactive plant metabolites. Plants of the family Amaryllidaceae have been used to extract several different alkaloids, each of which has the potential to be involved in a variety of pharmacological processes. Due to its multiple biological functions and divergent structure, lycorine has received significant interest in the medicinal field. Lycorine and other alkaloids from the Amaryllidaceae family have limited bioavailability by nature. In vitro culture provides an alternate method for producing lycorine sustainably due to the pharmaceutical industries dramatically increasing demand for it and the insufficient availability of natural resources. Many medicinal plants have been reported to produce lycorine in vitro in plant cell suspension cultures, and bioreactors play an effective role in their commercial production. This article focuses on the production of lycorine in in vitro systems from plants and its potential in the treatment of cancer. This study also aims to provide different biotechnological strategies for the production of this important alkaloid using in vitro system.</p>\",\"PeriodicalId\":733,\"journal\":{\"name\":\"Phytochemistry Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemistry Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11101-024-09941-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemistry Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11101-024-09941-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Lycorine as a lead molecule in the treatment of cancer and strategies for its biosynthesis using the in vitro culture technique
Medicinal plants are used by many of the global population because they are safe and effective alternative to other treatments. Over the last few decades, using plant cells to produce natural or recombinant chemicals of economic interest has become a great intention. Secondary metabolites are recognized to have a significant role in plant adaptation to their environment and are also a valuable source of medication. The increasing economic importance of secondary metabolites has recently sparked a lot of interest in biotransformation, particularly in using tissue culture techniques to modify the production of bioactive plant metabolites. Plants of the family Amaryllidaceae have been used to extract several different alkaloids, each of which has the potential to be involved in a variety of pharmacological processes. Due to its multiple biological functions and divergent structure, lycorine has received significant interest in the medicinal field. Lycorine and other alkaloids from the Amaryllidaceae family have limited bioavailability by nature. In vitro culture provides an alternate method for producing lycorine sustainably due to the pharmaceutical industries dramatically increasing demand for it and the insufficient availability of natural resources. Many medicinal plants have been reported to produce lycorine in vitro in plant cell suspension cultures, and bioreactors play an effective role in their commercial production. This article focuses on the production of lycorine in in vitro systems from plants and its potential in the treatment of cancer. This study also aims to provide different biotechnological strategies for the production of this important alkaloid using in vitro system.
期刊介绍:
Phytochemistry Reviews is the sole review journal encompassing all facets of phytochemistry. It publishes peer-reviewed papers in six issues annually, including topical issues often stemming from meetings organized by the Phytochemical Society of Europe. Additionally, the journal welcomes original review papers that contribute to advancing knowledge in various aspects of plant chemistry, function, biosynthesis, effects on plant and animal physiology, pathology, and their application in agriculture and industry. Invited meeting papers are supplemented with additional review papers, providing a comprehensive overview of the current status across all areas of phytochemistry.