Changxi Liu, Lechun Xie, Lai-Chang Zhang, Liqiang Wang
{"title":"以细胞结构为介导的加成法制造难熔高熵合金中的位错调控","authors":"Changxi Liu, Lechun Xie, Lai-Chang Zhang, Liqiang Wang","doi":"10.1080/21663831.2024.2341937","DOIUrl":null,"url":null,"abstract":"A Ti1.5Nb1Ta0.5Zr1Mo0.5 (TNTZM) refractory high entropy alloy (HEA) with a cellular structure was successfully fabricated by laser powder bed fusion (L-PBF). Compression testing and cyclic deformat...","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellular structure mediated dislocation regulation in additively manufactured refractory high entropy alloy\",\"authors\":\"Changxi Liu, Lechun Xie, Lai-Chang Zhang, Liqiang Wang\",\"doi\":\"10.1080/21663831.2024.2341937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Ti1.5Nb1Ta0.5Zr1Mo0.5 (TNTZM) refractory high entropy alloy (HEA) with a cellular structure was successfully fabricated by laser powder bed fusion (L-PBF). Compression testing and cyclic deformat...\",\"PeriodicalId\":18291,\"journal\":{\"name\":\"Materials Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21663831.2024.2341937\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2024.2341937","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Cellular structure mediated dislocation regulation in additively manufactured refractory high entropy alloy
A Ti1.5Nb1Ta0.5Zr1Mo0.5 (TNTZM) refractory high entropy alloy (HEA) with a cellular structure was successfully fabricated by laser powder bed fusion (L-PBF). Compression testing and cyclic deformat...
期刊介绍:
Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.