首页 > 最新文献

Materials Research Letters最新文献

英文 中文
Eliminate the contradiction between temperature and toughness by grain-boundary delamination in heterogeneous ultrafine-grained lamellar steels 在异质超细晶粒层状钢中通过晶界分层消除温度与韧性之间的矛盾
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1080/21663831.2024.2399880
Bo Yang, Fuxing Yin, Baoxi Liu, Liying Sun, Tianlong Liu, Hui Yu, Andrey Belyakov, Zhichao Luo
Heterostructured ferritic steels with bimodal-grained lamellar (BG-L) and ultrafine-grained lamellar (UFG-L) microstructure were prepared through a warm deformation process. The BG-L steel exhibits enhanced mechanical properties compared to conventional quenched and tempered (QT) steel. While the UFG-L steel demonstrates an outstanding combination of strength, ductility, and toughness. Furthermore, the UFG-L steels exhibit no ductile-to-brittle transition (DBT) from room temperature (RT) to liquid nitrogen temperature (LNT) and the Charpy impact energy remains as high as 314 J at LNT. The enhanced toughness at LNT can be attributed to the crack-arrester mechanism caused by grain-boundary delamination.
通过温变形工艺制备了具有双峰晶粒层状(BG-L)和超细晶粒层状(UFG-L)微观结构的异种结构铁素体钢。与传统的淬火回火(QT)钢相比,BG-L 钢的机械性能有所提高。而 UFG-L 钢则在强度、延展性和韧性方面都有出色的表现。此外,从室温(RT)到液氮温度(LNT),UFG-L 钢没有出现韧性到脆性的转变(DBT),在 LNT 温度下的夏比冲击能仍然高达 314 J。液氮温度下韧性的增强可归因于晶界分层引起的裂纹-断裂机制。
{"title":"Eliminate the contradiction between temperature and toughness by grain-boundary delamination in heterogeneous ultrafine-grained lamellar steels","authors":"Bo Yang, Fuxing Yin, Baoxi Liu, Liying Sun, Tianlong Liu, Hui Yu, Andrey Belyakov, Zhichao Luo","doi":"10.1080/21663831.2024.2399880","DOIUrl":"https://doi.org/10.1080/21663831.2024.2399880","url":null,"abstract":"Heterostructured ferritic steels with bimodal-grained lamellar (BG-L) and ultrafine-grained lamellar (UFG-L) microstructure were prepared through a warm deformation process. The BG-L steel exhibits enhanced mechanical properties compared to conventional quenched and tempered (QT) steel. While the UFG-L steel demonstrates an outstanding combination of strength, ductility, and toughness. Furthermore, the UFG-L steels exhibit no ductile-to-brittle transition (DBT) from room temperature (RT) to liquid nitrogen temperature (LNT) and the Charpy impact energy remains as high as 314 J at LNT. The enhanced toughness at LNT can be attributed to the crack-arrester mechanism caused by grain-boundary delamination.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The activation of multiple slip systems in polycrystalline zirconium by using automated lattice rotation framework 利用自动晶格旋转框架激活多晶锆中的多重滑移系统
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1080/21663831.2024.2402370
Huigang Shi, Jianye Chen, Junqiang Lu, Libing Zhu, Lefu Zhang, Jiuxiao Li, Weijie Lu, Xianglong Guo
Understanding the deformation mechanism in polycrystalline metals is critical to use them in high-value high-risk applications. Here, we report an automated framework based on lattice rotation analysis for accurately identifying slip system and assessing the multiple slip activities in large data set of polycrystalline Zr, aims to statistically provide deep insight on deformation mechanism of Zr. Results show that multiple slip is the dominant slip system rather than single slip system. This method can be applied as a complementary method to the intragranular misorientation axis (IGMA) method and can act as bridges between macro-mechanical response and microstructural deformation mechanisms.
要将多晶金属用于高价值、高风险的应用领域,了解其变形机制至关重要。在此,我们报告了一种基于晶格旋转分析的自动化框架,该框架可准确识别滑移系统,并评估多晶锆大型数据集中的多重滑移活动,旨在从统计学角度深入了解锆的变形机制。结果表明,多重滑移是主要的滑移系统,而不是单一滑移系统。该方法可作为晶内错向轴(IGMA)方法的补充方法,并可作为宏观机械响应和微观结构变形机制之间的桥梁。
{"title":"The activation of multiple slip systems in polycrystalline zirconium by using automated lattice rotation framework","authors":"Huigang Shi, Jianye Chen, Junqiang Lu, Libing Zhu, Lefu Zhang, Jiuxiao Li, Weijie Lu, Xianglong Guo","doi":"10.1080/21663831.2024.2402370","DOIUrl":"https://doi.org/10.1080/21663831.2024.2402370","url":null,"abstract":"Understanding the deformation mechanism in polycrystalline metals is critical to use them in high-value high-risk applications. Here, we report an automated framework based on lattice rotation analysis for accurately identifying slip system and assessing the multiple slip activities in large data set of polycrystalline Zr, aims to statistically provide deep insight on deformation mechanism of Zr. Results show that multiple slip is the dominant slip system rather than single slip system. This method can be applied as a complementary method to the intragranular misorientation axis (IGMA) method and can act as bridges between macro-mechanical response and microstructural deformation mechanisms.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructural evolution and toughening mechanism of WC-Co composite prepared by amorphous-crystallization method 非晶-结晶法制备的 WC-Co 复合材料的微结构演化和增韧机理
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1080/21663831.2024.2405085
Maobao Xu, Haibin Wang, Xuemei Liu, Hao Lu, Xiaoyan Song
In this study, toughening of WC-Co composite prepared by amorphous-crystallization method was investigated. Co-rich nanoparticles, a Co(W,C) solid solution, were incorporated into the WC matrix through the process integrating crystallization of amorphous Co2W4C powder and its in-situ reaction with carbon. The microstructural evolution of the ceramic-metal composite during fabrication was studied in detail. Owing to the interactions between Co-rich nanoparticles coherent with the WC matrix and the dislocations and stacking faults inside WC grains, the composite exhibited high hardness and strength combined with exceptional fracture toughness. The mechanisms for the synergistic improvement of mechanical properties of the composite were disclosed.
本研究探讨了非晶-结晶法制备的 WC-Co 复合材料的增韧问题。通过非晶 Co2W4C 粉末的结晶及其与碳的原位反应,富 Co 纳米颗粒(一种 Co(W,C)固溶体)被加入到 WC 基体中。我们详细研究了陶瓷-金属复合材料在制造过程中的微观结构演变。由于富钴纳米粒子与碳化钨基体之间的相互作用,以及碳化钨晶粒内部的位错和堆积断层,复合材料表现出了高硬度、高强度和优异的断裂韧性。研究揭示了该复合材料机械性能协同改善的机制。
{"title":"Microstructural evolution and toughening mechanism of WC-Co composite prepared by amorphous-crystallization method","authors":"Maobao Xu, Haibin Wang, Xuemei Liu, Hao Lu, Xiaoyan Song","doi":"10.1080/21663831.2024.2405085","DOIUrl":"https://doi.org/10.1080/21663831.2024.2405085","url":null,"abstract":"In this study, toughening of WC-Co composite prepared by amorphous-crystallization method was investigated. Co-rich nanoparticles, a Co(W,C) solid solution, were incorporated into the WC matrix through the process integrating crystallization of amorphous Co<sub>2</sub>W<sub>4</sub>C powder and its in-situ reaction with carbon. The microstructural evolution of the ceramic-metal composite during fabrication was studied in detail. Owing to the interactions between Co-rich nanoparticles coherent with the WC matrix and the dislocations and stacking faults inside WC grains, the composite exhibited high hardness and strength combined with exceptional fracture toughness. The mechanisms for the synergistic improvement of mechanical properties of the composite were disclosed.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel atomic mechanism of fcc → hcp → bcc phase transition in a gradient nanostructured compositionally complex alloy 梯度纳米结构成分复杂合金中 fcc → hcp → bcc 相变的新型原子机制
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-19 DOI: 10.1080/21663831.2024.2405228
Wenqing Yang, Lei Qian, Jiasi Luo, Xu-Sheng Yang
This study investigates the plastic deformation-induced fcc → hcp → bcc phase transition within nanograins in an ultra-strong gradient nanostructured surface layer on Fe45Mn35Cr10Co10 compositional...
本研究探讨了在 Fe45Mn35Cr10Co10 成分的超强梯度纳米结构表层中纳米晶粒内塑性变形诱导的 fcc → hcp → bcc 相变。
{"title":"A novel atomic mechanism of fcc → hcp → bcc phase transition in a gradient nanostructured compositionally complex alloy","authors":"Wenqing Yang, Lei Qian, Jiasi Luo, Xu-Sheng Yang","doi":"10.1080/21663831.2024.2405228","DOIUrl":"https://doi.org/10.1080/21663831.2024.2405228","url":null,"abstract":"This study investigates the plastic deformation-induced fcc → hcp → bcc phase transition within nanograins in an ultra-strong gradient nanostructured surface layer on Fe45Mn35Cr10Co10 compositional...","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the origin of ductility in multilayered Ti/Nb composites: role of dislocation evolution 揭示多层钛/铌复合材料延展性的起源:位错演变的作用
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-15 DOI: 10.1080/21663831.2024.2402913
S. Jiang, Y. T. Li, Z. F. He, R. Lin Peng, Z. Hegedüs, U. Lienert, N. Jia
Dislocation evolution in multilayered Ti/Nb composites processed by accumulative roll bonding under uniaxial tension was quantitatively evaluated by high-energy X-ray diffraction. The composites wi...Dynamic evolution of dislocations, rather than only dislocation densities obtained by post-mortem analysis, is found to explain ductility of multilayered composites, which can be tailored by adjust...
利用高能 X 射线衍射定量评估了在单轴拉力下通过累积轧制粘接法加工的多层钛/铌复合材料中的位错演变。...研究发现,位错的动态演变,而不仅仅是位错密度的死后分析,可以解释多层复合材料的延展性,这种延展性可以通过调整位错密度来调整。
{"title":"Unraveling the origin of ductility in multilayered Ti/Nb composites: role of dislocation evolution","authors":"S. Jiang, Y. T. Li, Z. F. He, R. Lin Peng, Z. Hegedüs, U. Lienert, N. Jia","doi":"10.1080/21663831.2024.2402913","DOIUrl":"https://doi.org/10.1080/21663831.2024.2402913","url":null,"abstract":"Dislocation evolution in multilayered Ti/Nb composites processed by accumulative roll bonding under uniaxial tension was quantitatively evaluated by high-energy X-ray diffraction. The composites wi...Dynamic evolution of dislocations, rather than only dislocation densities obtained by post-mortem analysis, is found to explain ductility of multilayered composites, which can be tailored by adjust...","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced strength and ductility in (CoCrNi)92Mo2Al6 medium entropy alloy via dual heterogeneous structures 通过双异质结构提高 (CoCrNi)92Mo2Al6 中熵合金的强度和延展性
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-11 DOI: 10.1080/21663831.2024.2399579
Tiancheng Li, Haiyang Chen, Yubo Huang, Qiang Hao, Hongchuan Ma, Zaifeng Zhou, Shilei Li, Yan-Dong Wang
In the present (CoCrNi)92Mo2Al6 medium entropy alloy (MEA), a dual heterogeneous structure is achieved by regulating the degree of recrystallization of the FCC matrix and σ phase precipitation thro...
在目前的(CoCrNi)92Mo2Al6中熵合金(MEA)中,通过调节FCC基体的再结晶程度和σ相的析出程度,实现了双重异质结构。
{"title":"Enhanced strength and ductility in (CoCrNi)92Mo2Al6 medium entropy alloy via dual heterogeneous structures","authors":"Tiancheng Li, Haiyang Chen, Yubo Huang, Qiang Hao, Hongchuan Ma, Zaifeng Zhou, Shilei Li, Yan-Dong Wang","doi":"10.1080/21663831.2024.2399579","DOIUrl":"https://doi.org/10.1080/21663831.2024.2399579","url":null,"abstract":"In the present (CoCrNi)92Mo2Al6 medium entropy alloy (MEA), a dual heterogeneous structure is achieved by regulating the degree of recrystallization of the FCC matrix and σ phase precipitation thro...","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving Elinvar effect over a wide temperature range in an additively manufactured titanium alloy 在添加型钛合金的宽温度范围内实现埃林瓦效应
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-04 DOI: 10.1080/21663831.2024.2396030
Chengqian Lu, Delun Gong, Yandi Jia, Yuxiang Zhang, Yingying Shen, Wentao Hou, Na Ma, Zengqian Liu, Rui Yang, Yulin Hao
Temperature-insensitive elastic modulus known as Elinvar effect is typically achievable in metastable titanium alloys only through thermomechanical processing. Here reports that a directly additive...
对温度不敏感的弹性模量被称为埃林瓦尔效应(Elinvar effect),通常只有通过热机械加工才能在可变型钛合金中实现。本文报告了一种直接添加...
{"title":"Achieving Elinvar effect over a wide temperature range in an additively manufactured titanium alloy","authors":"Chengqian Lu, Delun Gong, Yandi Jia, Yuxiang Zhang, Yingying Shen, Wentao Hou, Na Ma, Zengqian Liu, Rui Yang, Yulin Hao","doi":"10.1080/21663831.2024.2396030","DOIUrl":"https://doi.org/10.1080/21663831.2024.2396030","url":null,"abstract":"Temperature-insensitive elastic modulus known as Elinvar effect is typically achievable in metastable titanium alloys only through thermomechanical processing. Here reports that a directly additive...","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strain hardening mechanism induced by basal/pyramidal dislocation reactions in a 3D-printed high-strength titanium alloy 三维打印高强度钛合金中基底/锥形位错反应诱发的应变硬化机制
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-29 DOI: 10.1080/21663831.2024.2395433
Qiaodan Yan, Xin Lin, Jun Yu, Xufei Lu, Weidong Huang
The high yield ratio and low strain hardening ability of titanium alloys significantly limit their engineering applications. In this work, a Ti65Zr30Cu5 (at.%) alloy with nanoscale α laths was addi...
钛合金的高屈服比和低应变硬化能力极大地限制了其工程应用。在这项研究中,一种具有纳米级 α 板条的 Ti65Zr30Cu5 (at.%) 合金被添加到了钛合金中。
{"title":"Strain hardening mechanism induced by basal/pyramidal dislocation reactions in a 3D-printed high-strength titanium alloy","authors":"Qiaodan Yan, Xin Lin, Jun Yu, Xufei Lu, Weidong Huang","doi":"10.1080/21663831.2024.2395433","DOIUrl":"https://doi.org/10.1080/21663831.2024.2395433","url":null,"abstract":"The high yield ratio and low strain hardening ability of titanium alloys significantly limit their engineering applications. In this work, a Ti65Zr30Cu5 (at.%) alloy with nanoscale α laths was addi...","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microtwinning mechanism revealed by its orientation dependence and tension-compression asymmetry in γ′ precipitate-strengthened Ni-based superalloys 通过γ′沉淀强化镍基超合金的取向依赖性和拉伸-压缩不对称揭示微缠结机理
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-26 DOI: 10.1080/21663831.2024.2396044
Pengfei Qu, Wenchao Yang, Qiang Wang, Chen Liu, Jiarun Qin, Jun Zhang, Lin Liu
Microtwinning is observed as an important mechanism in γ′ precipitate-strengthened Ni-based superalloys during service at intermediate temperatures. Here, the effect of crystal orientation and stre...For the first time, this work explains why microtwinning exhibits orientation dependence and tension-compression asymmetry while stacking faults do not, although they both originate from the activi...
微孪晶是γ′沉淀强化镍基超合金在中温服役期间的一种重要机理。这项研究首次解释了为什么微孪晶表现出取向依赖性和拉伸-压缩不对称,而堆叠断层却没有,尽管它们都源于γ′淀......这项研究首次解释了为什么微孪晶表现出取向依赖性和拉伸-压缩不对称,而堆叠断层却没有,尽管它们都源于γ′淀...
{"title":"Microtwinning mechanism revealed by its orientation dependence and tension-compression asymmetry in γ′ precipitate-strengthened Ni-based superalloys","authors":"Pengfei Qu, Wenchao Yang, Qiang Wang, Chen Liu, Jiarun Qin, Jun Zhang, Lin Liu","doi":"10.1080/21663831.2024.2396044","DOIUrl":"https://doi.org/10.1080/21663831.2024.2396044","url":null,"abstract":"Microtwinning is observed as an important mechanism in γ′ precipitate-strengthened Ni-based superalloys during service at intermediate temperatures. Here, the effect of crystal orientation and stre...For the first time, this work explains why microtwinning exhibits orientation dependence and tension-compression asymmetry while stacking faults do not, although they both originate from the activi...","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing strength and ductility in heterolamellar medium-Mn steel through bamboo-like microstructure design 通过竹节状微观结构设计提高异性胶质中锰钢的强度和延展性
IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-26 DOI: 10.1080/21663831.2024.2394575
Chao Ding, Gang Niu, Zhihui Zhang, Enmao Wang, Xinpan Yu, Huibin Wu
Nature has long inspired technological innovations, fostering the rapidly developing field of bionics. Inspired by the microstructure of bamboo, we have developed a bamboo-like structure for steel....A bamboo-like steel consisting of lamellar ferrite and austenite alternating along the rolling direction, providing a new path to produce medium-Mn steels with outstanding mechanical properties.
长期以来,大自然为技术创新提供了灵感,促进了仿生学领域的快速发展。受竹子微观结构的启发,我们开发出了一种由沿轧制方向交替的片状铁素体和奥氏体组成的类竹结构钢....,为生产具有出色机械性能的中锰钢提供了一条新途径。
{"title":"Enhancing strength and ductility in heterolamellar medium-Mn steel through bamboo-like microstructure design","authors":"Chao Ding, Gang Niu, Zhihui Zhang, Enmao Wang, Xinpan Yu, Huibin Wu","doi":"10.1080/21663831.2024.2394575","DOIUrl":"https://doi.org/10.1080/21663831.2024.2394575","url":null,"abstract":"Nature has long inspired technological innovations, fostering the rapidly developing field of bionics. Inspired by the microstructure of bamboo, we have developed a bamboo-like structure for steel....A bamboo-like steel consisting of lamellar ferrite and austenite alternating along the rolling direction, providing a new path to produce medium-Mn steels with outstanding mechanical properties.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Research Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1