{"title":"通过调节表面形貌实现除冰性能随疏水度增加而变化","authors":"Wei Weng, Xiaoyang Zheng, Mizuki Tenjimbayashi, Ikumu Watanabe, Masanobu Naito","doi":"10.1080/14686996.2024.2334199","DOIUrl":null,"url":null,"abstract":"It is of great significance to grasp the role of surface topography in de-icing, which however remains unclear yet. Herein, four textured surfaces are developed by regulating surface topography whi...","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"47 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De-icing performance evolution with increasing hydrophobicity by regulating surface topography\",\"authors\":\"Wei Weng, Xiaoyang Zheng, Mizuki Tenjimbayashi, Ikumu Watanabe, Masanobu Naito\",\"doi\":\"10.1080/14686996.2024.2334199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is of great significance to grasp the role of surface topography in de-icing, which however remains unclear yet. Herein, four textured surfaces are developed by regulating surface topography whi...\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2024.2334199\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2334199","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
De-icing performance evolution with increasing hydrophobicity by regulating surface topography
It is of great significance to grasp the role of surface topography in de-icing, which however remains unclear yet. Herein, four textured surfaces are developed by regulating surface topography whi...
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.