{"title":"用里特维尔德方法研究形态相边界附近的 BiScO3-PbTiO3-PbMg⅓Nb⅔O3 体系陶瓷样品的相结构","authors":"Vladimir Sirotinkin, Alexandr Bush, Maksim Sysoev","doi":"10.1515/zkri-2024-0065","DOIUrl":null,"url":null,"abstract":"An X-ray diffraction study of ceramic samples of the BiScO<jats:sub>3</jats:sub>–PbTiO<jats:sub>3</jats:sub>–PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> system with compositions close to the morphotropic phase boundary was carried out at room temperature. The existence of wide areas of solid solutions has been established. The symmetry of the PbTiO<jats:sub>3</jats:sub>-based solid solutions is tetragonal (space group <jats:italic>P</jats:italic>4<jats:italic>mm</jats:italic>). The symmetry of the PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub>-based solid solutions is cubic (space group <jats:italic>Pm</jats:italic> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mover accent=\"true\"> <m:mn>3</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$\\overline{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_zkri-2024-0065_ineq_201.png\" /> </jats:alternatives> </jats:inline-formula> <jats:italic>m</jats:italic>). Near the BiScO<jats:sub>3</jats:sub> side, the solid solutions are rhombohedral (space group <jats:italic>R</jats:italic>3<jats:italic>m</jats:italic>). During the morphotropic phase transition from the cubic solid solutions to the tetragonal ones, additional phases appear. If a tetragonal phase prevails ((1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> <jats:italic>x</jats:italic> = 0.46; (1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–1.1<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–0.9<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> <jats:italic>x</jats:italic> = 0.45 and 0.42), a satisfactory model is a model with a minority cubic phase (space group <jats:italic>Pm</jats:italic> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mover accent=\"true\"> <m:mn>3</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$\\overline{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_zkri-2024-0065_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> <jats:italic>m</jats:italic>). If a cubic phase prevails ((1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–1.1<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–0.9<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> <jats:italic>x</jats:italic> = 0.39 and 0.36; (1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–0.8<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–1.2<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> <jats:italic>x</jats:italic> = 0.4), a model with a minority monoclinic phase (space group <jats:italic>Cm</jats:italic>) or with two minority phases: tetragonal (space group <jats:italic>P</jats:italic>4<jats:italic>mm</jats:italic>) and monoclinic (space group <jats:italic>Cm</jats:italic>) is satisfactory.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase structure of the ceramic samples of the BiScO3–PbTiO3–PbMg⅓Nb⅔O3 system near the morphotropic phase boundary studied by the Rietveld method\",\"authors\":\"Vladimir Sirotinkin, Alexandr Bush, Maksim Sysoev\",\"doi\":\"10.1515/zkri-2024-0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An X-ray diffraction study of ceramic samples of the BiScO<jats:sub>3</jats:sub>–PbTiO<jats:sub>3</jats:sub>–PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> system with compositions close to the morphotropic phase boundary was carried out at room temperature. The existence of wide areas of solid solutions has been established. The symmetry of the PbTiO<jats:sub>3</jats:sub>-based solid solutions is tetragonal (space group <jats:italic>P</jats:italic>4<jats:italic>mm</jats:italic>). The symmetry of the PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub>-based solid solutions is cubic (space group <jats:italic>Pm</jats:italic> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mn>3</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$\\\\overline{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_zkri-2024-0065_ineq_201.png\\\" /> </jats:alternatives> </jats:inline-formula> <jats:italic>m</jats:italic>). Near the BiScO<jats:sub>3</jats:sub> side, the solid solutions are rhombohedral (space group <jats:italic>R</jats:italic>3<jats:italic>m</jats:italic>). During the morphotropic phase transition from the cubic solid solutions to the tetragonal ones, additional phases appear. If a tetragonal phase prevails ((1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> <jats:italic>x</jats:italic> = 0.46; (1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–1.1<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–0.9<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> <jats:italic>x</jats:italic> = 0.45 and 0.42), a satisfactory model is a model with a minority cubic phase (space group <jats:italic>Pm</jats:italic> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mn>3</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$\\\\overline{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_zkri-2024-0065_ineq_001.png\\\" /> </jats:alternatives> </jats:inline-formula> <jats:italic>m</jats:italic>). If a cubic phase prevails ((1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–1.1<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–0.9<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> <jats:italic>x</jats:italic> = 0.39 and 0.36; (1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–0.8<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–1.2<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> <jats:italic>x</jats:italic> = 0.4), a model with a minority monoclinic phase (space group <jats:italic>Cm</jats:italic>) or with two minority phases: tetragonal (space group <jats:italic>P</jats:italic>4<jats:italic>mm</jats:italic>) and monoclinic (space group <jats:italic>Cm</jats:italic>) is satisfactory.\",\"PeriodicalId\":23855,\"journal\":{\"name\":\"Zeitschrift für Kristallographie - Crystalline Materials\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Kristallographie - Crystalline Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/zkri-2024-0065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Kristallographie - Crystalline Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zkri-2024-0065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在室温下,对成分接近形态相边界的 BiScO3-PbTiO3-PbMg⅓Nb⅔O3 体系陶瓷样品进行了 X 射线衍射研究。研究证实了固溶体的广泛存在。基于 PbTiO3 的固溶体的对称性为四方(空间群 P4mm)。基于 PbMg⅓Nb⅔O3 的固溶体的对称性为立方(空间群 Pm 3 ‾ $\overline{3}$ m)。在靠近 BiScO3 的一侧,固溶体为斜方体(空间群 R3m)。在从立方固溶体到四方固溶体的形态相变过程中,会出现其他相。如果以四方相为主((1 - 2x)BiScO3-xPbTiO3-xPbMg⅓Nb⅔O3 x = 0.46;(1 - 2x)BiScO3-1.1xPbTiO3-0.9xPbMg⅓Nb⅔O3 x = 0.45 和 0.42),一个令人满意的模型是具有少数立方相(空间群 Pm 3 ‾ $\overline{3}$ m)的模型。如果立方相占优势((1-2x)BiScO3-1.1xPbTiO3-0.9xPbMg⅓Nb⅔O3 x = 0.39 和 0.36;(1-2x)BiScO3-0.8xPbTiO3-1.2xPbMg⅓Nb⅔O3 x = 0.4),一个具有少数单斜相(空间群 Cm)或两个少数相:四方相(空间群 P4mm)和单斜相(空间群 Cm)的模型是令人满意的。
Phase structure of the ceramic samples of the BiScO3–PbTiO3–PbMg⅓Nb⅔O3 system near the morphotropic phase boundary studied by the Rietveld method
An X-ray diffraction study of ceramic samples of the BiScO3–PbTiO3–PbMg⅓Nb⅔O3 system with compositions close to the morphotropic phase boundary was carried out at room temperature. The existence of wide areas of solid solutions has been established. The symmetry of the PbTiO3-based solid solutions is tetragonal (space group P4mm). The symmetry of the PbMg⅓Nb⅔O3-based solid solutions is cubic (space group Pm3‾$\overline{3}$m). Near the BiScO3 side, the solid solutions are rhombohedral (space group R3m). During the morphotropic phase transition from the cubic solid solutions to the tetragonal ones, additional phases appear. If a tetragonal phase prevails ((1 − 2x)BiScO3–xPbTiO3–xPbMg⅓Nb⅔O3x = 0.46; (1 − 2x)BiScO3–1.1xPbTiO3–0.9xPbMg⅓Nb⅔O3x = 0.45 and 0.42), a satisfactory model is a model with a minority cubic phase (space group Pm3‾$\overline{3}$m). If a cubic phase prevails ((1 − 2x)BiScO3–1.1xPbTiO3–0.9xPbMg⅓Nb⅔O3x = 0.39 and 0.36; (1 − 2x)BiScO3–0.8xPbTiO3–1.2xPbMg⅓Nb⅔O3x = 0.4), a model with a minority monoclinic phase (space group Cm) or with two minority phases: tetragonal (space group P4mm) and monoclinic (space group Cm) is satisfactory.