基于语义的数据联盟:让材料科学家更接近 FAIR 数据

IF 2.4 3区 材料科学 Q3 ENGINEERING, MANUFACTURING Integrating Materials and Manufacturing Innovation Pub Date : 2024-04-09 DOI:10.1007/s40192-024-00348-4
Kareem S. Aggour, Vijay S. Kumar, Vipul K. Gupta, Alfredo Gabaldon, Paul Cuddihy, Varish Mulwad
{"title":"基于语义的数据联盟:让材料科学家更接近 FAIR 数据","authors":"Kareem S. Aggour, Vijay S. Kumar, Vipul K. Gupta, Alfredo Gabaldon, Paul Cuddihy, Varish Mulwad","doi":"10.1007/s40192-024-00348-4","DOIUrl":null,"url":null,"abstract":"<p>The development and discovery of new materials can be significantly enhanced through the adoption of FAIR (Findable, Accessible, Interoperable, and Reusable) data principles and the establishment of a robust data infrastructure in support of materials informatics. A FAIR data infrastructure and associated best practices empower materials scientists to access and make the most of a wealth of information on materials properties, structures, and behaviors, allowing them to collaborate effectively, and enable data-driven approaches to material discovery. To make data findable, accessible, interoperable, and reusable to materials scientists, we developed and are in the process of expanding a materials data infrastructure to capture, store, and link data to enable a variety of analytics and visualizations. Our infrastructure follows three key architectural design philosophies: (i) capture data across a federated storage layer to minimize the storage footprint and maximize the query performance for each data type, (ii) use a knowledge graph-based data fusion layer to provide a single logical interface above the federated data repositories, and (iii) provide an ensemble of FAIR data access and reuse services atop the knowledge graph to make it easy for materials scientists and other domain experts to explore, use, and derive value from the data. This paper details our architectural approach, open-source technologies used to build the capabilities and services, and describes two applications through which we have successfully demonstrated its use. In the first use case, we created a system to enable additive manufacturing data storage and process parameter optimization with a range of user-friendly visualizations. In the second use case, we created a system for exploring data from cathodic arc deposition experiments to develop a new steam turbine coating material, fusing a combination of materials data with physics-based equations to enable advanced reasoning over the combined knowledge using a natural language chatbot-like user interface.</p>","PeriodicalId":13604,"journal":{"name":"Integrating Materials and Manufacturing Innovation","volume":"2013 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantics-Enabled Data Federation: Bringing Materials Scientists Closer to FAIR Data\",\"authors\":\"Kareem S. Aggour, Vijay S. Kumar, Vipul K. Gupta, Alfredo Gabaldon, Paul Cuddihy, Varish Mulwad\",\"doi\":\"10.1007/s40192-024-00348-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development and discovery of new materials can be significantly enhanced through the adoption of FAIR (Findable, Accessible, Interoperable, and Reusable) data principles and the establishment of a robust data infrastructure in support of materials informatics. A FAIR data infrastructure and associated best practices empower materials scientists to access and make the most of a wealth of information on materials properties, structures, and behaviors, allowing them to collaborate effectively, and enable data-driven approaches to material discovery. To make data findable, accessible, interoperable, and reusable to materials scientists, we developed and are in the process of expanding a materials data infrastructure to capture, store, and link data to enable a variety of analytics and visualizations. Our infrastructure follows three key architectural design philosophies: (i) capture data across a federated storage layer to minimize the storage footprint and maximize the query performance for each data type, (ii) use a knowledge graph-based data fusion layer to provide a single logical interface above the federated data repositories, and (iii) provide an ensemble of FAIR data access and reuse services atop the knowledge graph to make it easy for materials scientists and other domain experts to explore, use, and derive value from the data. This paper details our architectural approach, open-source technologies used to build the capabilities and services, and describes two applications through which we have successfully demonstrated its use. In the first use case, we created a system to enable additive manufacturing data storage and process parameter optimization with a range of user-friendly visualizations. In the second use case, we created a system for exploring data from cathodic arc deposition experiments to develop a new steam turbine coating material, fusing a combination of materials data with physics-based equations to enable advanced reasoning over the combined knowledge using a natural language chatbot-like user interface.</p>\",\"PeriodicalId\":13604,\"journal\":{\"name\":\"Integrating Materials and Manufacturing Innovation\",\"volume\":\"2013 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrating Materials and Manufacturing Innovation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40192-024-00348-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrating Materials and Manufacturing Innovation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40192-024-00348-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

通过采用 FAIR(可查找、可访问、可互操作、可重用)数据原则和建立强大的数据基础设施来支持材料信息学,可以极大地促进新材料的开发和发现。FAIR 数据基础设施和相关的最佳实践使材料科学家能够访问和充分利用有关材料特性、结构和行为的大量信息,使他们能够有效地开展合作,并采用数据驱动的方法来发现材料。为了让材料科学家能够查找、访问、互操作和重用数据,我们开发了材料数据基础设施,并正在进行扩展,以捕获、存储和链接数据,从而实现各种分析和可视化。我们的基础设施遵循三个关键的架构设计理念:(i) 通过联合存储层捕获数据,最大限度地减少存储空间占用,最大限度地提高每种数据类型的查询性能;(ii) 使用基于知识图谱的数据融合层,在联合数据存储库之上提供单一的逻辑接口;(iii) 在知识图谱之上提供一系列 FAIR 数据访问和重用服务,使材料科学家和其他领域专家能够轻松地探索、使用数据并从中获取价值。本文详细介绍了我们的架构方法、用于构建能力和服务的开源技术,并介绍了我们成功演示其使用的两个应用案例。在第一个用例中,我们创建了一个系统,通过一系列用户友好的可视化功能来实现增材制造数据存储和工艺参数优化。在第二个用例中,我们创建了一个系统,用于探索阴极电弧沉积实验数据,以开发新的蒸汽轮机涂层材料,将材料数据与基于物理的方程相结合,使用类似自然语言聊天机器人的用户界面对综合知识进行高级推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantics-Enabled Data Federation: Bringing Materials Scientists Closer to FAIR Data

The development and discovery of new materials can be significantly enhanced through the adoption of FAIR (Findable, Accessible, Interoperable, and Reusable) data principles and the establishment of a robust data infrastructure in support of materials informatics. A FAIR data infrastructure and associated best practices empower materials scientists to access and make the most of a wealth of information on materials properties, structures, and behaviors, allowing them to collaborate effectively, and enable data-driven approaches to material discovery. To make data findable, accessible, interoperable, and reusable to materials scientists, we developed and are in the process of expanding a materials data infrastructure to capture, store, and link data to enable a variety of analytics and visualizations. Our infrastructure follows three key architectural design philosophies: (i) capture data across a federated storage layer to minimize the storage footprint and maximize the query performance for each data type, (ii) use a knowledge graph-based data fusion layer to provide a single logical interface above the federated data repositories, and (iii) provide an ensemble of FAIR data access and reuse services atop the knowledge graph to make it easy for materials scientists and other domain experts to explore, use, and derive value from the data. This paper details our architectural approach, open-source technologies used to build the capabilities and services, and describes two applications through which we have successfully demonstrated its use. In the first use case, we created a system to enable additive manufacturing data storage and process parameter optimization with a range of user-friendly visualizations. In the second use case, we created a system for exploring data from cathodic arc deposition experiments to develop a new steam turbine coating material, fusing a combination of materials data with physics-based equations to enable advanced reasoning over the combined knowledge using a natural language chatbot-like user interface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Integrating Materials and Manufacturing Innovation
Integrating Materials and Manufacturing Innovation Engineering-Industrial and Manufacturing Engineering
CiteScore
5.30
自引率
9.10%
发文量
42
审稿时长
39 days
期刊介绍: The journal will publish: Research that supports building a model-based definition of materials and processes that is compatible with model-based engineering design processes and multidisciplinary design optimization; Descriptions of novel experimental or computational tools or data analysis techniques, and their application, that are to be used for ICME; Best practices in verification and validation of computational tools, sensitivity analysis, uncertainty quantification, and data management, as well as standards and protocols for software integration and exchange of data; In-depth descriptions of data, databases, and database tools; Detailed case studies on efforts, and their impact, that integrate experiment and computation to solve an enduring engineering problem in materials and manufacturing.
期刊最新文献
New Paradigms in Model Based Materials Definitions for Titanium Alloys in Aerospace Applications An Explainable Deep Learning Model Based on Multi-scale Microstructure Information for Establishing Composition–Microstructure–Property Relationship of Aluminum Alloys Comparison of Full-Field Crystal Plasticity Simulations to Synchrotron Experiments: Detailed Investigation of Mispredictions 3D Reconstruction of a High-Energy Diffraction Microscopy Sample Using Multi-modal Serial Sectioning with High-Precision EBSD and Surface Profilometry L-PBF High-Throughput Data Pipeline Approach for Multi-modal Integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1