{"title":"用于牙周炎综合治疗的电纺三层偏心 Janus 纳米纤维","authors":"Ping Zhao, Kecong Zhou, Yiru Xia, Cheng Qian, Deng-Guang Yu, Yufeng Xie, Yaozu Liao","doi":"10.1007/s42765-024-00397-6","DOIUrl":null,"url":null,"abstract":"<div><p>Oral diseases are common and prevalent, affecting people's health and seriously impairing their quality of life. The implantable class of materials for a safe, convenient, and comprehensive cure of periodontitis is highly desired. This study shows a proof-of-concept demonstration about the implant fibrous membranes. The fibers having a trilayer eccentric side-by-side structure are fabricated using the multiple-fluid electrospinning, and are fine candidates for treating periodontitis. In the trilayer eccentric side-by-side composite nanofibers, the outermost layer contains a hydrophilic polymer and a drug called ketoprofen, which can reach a release of 50% within 0.37 h, providing a rapid pain relief and anti-inflammatory effect. The middle layer is loaded with metronidazole, which is manipulated to be released in a sustained manner. The innermost layer is loaded with nano-hydroxyapatite, which can directly contact with periodontal tissues to achieve the effect of promoting alveolar bone growth. The experimental results indicate that the developed implant films have good wettability, fine mechanical properties, biodegradability, and excellent antibacterial properties. The implant films can reduce inflammatory responses and promote osteoblast formation by down-regulating interleukin 6 and up-regulating osteoprotegerin expression. In addition, their composite nanostructures exhibit the desired promotional effects on fibroblast attachment, infiltration, proliferation, and differentiation. Overall, the developed fibrous implant films show strong potential for use in a combined treatment of periodontitis. The protocols reported here pave a new way to develop multi-chamber based advanced fiber materials for realizing the desired functional performances through a robust process-structure-performance relationship.</p></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 4","pages":"1053 - 1073"},"PeriodicalIF":17.2000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrospun trilayer eccentric Janus nanofibers for a combined treatment of periodontitis\",\"authors\":\"Ping Zhao, Kecong Zhou, Yiru Xia, Cheng Qian, Deng-Guang Yu, Yufeng Xie, Yaozu Liao\",\"doi\":\"10.1007/s42765-024-00397-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oral diseases are common and prevalent, affecting people's health and seriously impairing their quality of life. The implantable class of materials for a safe, convenient, and comprehensive cure of periodontitis is highly desired. This study shows a proof-of-concept demonstration about the implant fibrous membranes. The fibers having a trilayer eccentric side-by-side structure are fabricated using the multiple-fluid electrospinning, and are fine candidates for treating periodontitis. In the trilayer eccentric side-by-side composite nanofibers, the outermost layer contains a hydrophilic polymer and a drug called ketoprofen, which can reach a release of 50% within 0.37 h, providing a rapid pain relief and anti-inflammatory effect. The middle layer is loaded with metronidazole, which is manipulated to be released in a sustained manner. The innermost layer is loaded with nano-hydroxyapatite, which can directly contact with periodontal tissues to achieve the effect of promoting alveolar bone growth. The experimental results indicate that the developed implant films have good wettability, fine mechanical properties, biodegradability, and excellent antibacterial properties. The implant films can reduce inflammatory responses and promote osteoblast formation by down-regulating interleukin 6 and up-regulating osteoprotegerin expression. In addition, their composite nanostructures exhibit the desired promotional effects on fibroblast attachment, infiltration, proliferation, and differentiation. Overall, the developed fibrous implant films show strong potential for use in a combined treatment of periodontitis. The protocols reported here pave a new way to develop multi-chamber based advanced fiber materials for realizing the desired functional performances through a robust process-structure-performance relationship.</p></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"6 4\",\"pages\":\"1053 - 1073\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-024-00397-6\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00397-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrospun trilayer eccentric Janus nanofibers for a combined treatment of periodontitis
Oral diseases are common and prevalent, affecting people's health and seriously impairing their quality of life. The implantable class of materials for a safe, convenient, and comprehensive cure of periodontitis is highly desired. This study shows a proof-of-concept demonstration about the implant fibrous membranes. The fibers having a trilayer eccentric side-by-side structure are fabricated using the multiple-fluid electrospinning, and are fine candidates for treating periodontitis. In the trilayer eccentric side-by-side composite nanofibers, the outermost layer contains a hydrophilic polymer and a drug called ketoprofen, which can reach a release of 50% within 0.37 h, providing a rapid pain relief and anti-inflammatory effect. The middle layer is loaded with metronidazole, which is manipulated to be released in a sustained manner. The innermost layer is loaded with nano-hydroxyapatite, which can directly contact with periodontal tissues to achieve the effect of promoting alveolar bone growth. The experimental results indicate that the developed implant films have good wettability, fine mechanical properties, biodegradability, and excellent antibacterial properties. The implant films can reduce inflammatory responses and promote osteoblast formation by down-regulating interleukin 6 and up-regulating osteoprotegerin expression. In addition, their composite nanostructures exhibit the desired promotional effects on fibroblast attachment, infiltration, proliferation, and differentiation. Overall, the developed fibrous implant films show strong potential for use in a combined treatment of periodontitis. The protocols reported here pave a new way to develop multi-chamber based advanced fiber materials for realizing the desired functional performances through a robust process-structure-performance relationship.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.