FedUSL:基于多模态传感数据的驾驶疲劳检测联合注释方法

IF 3.9 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Sensor Networks Pub Date : 2024-04-10 DOI:10.1145/3657291
Songcan Yu, Qinglin Yang, Junbo Wang, Celimuge Wu
{"title":"FedUSL:基于多模态传感数据的驾驶疲劳检测联合注释方法","authors":"Songcan Yu, Qinglin Yang, Junbo Wang, Celimuge Wu","doi":"10.1145/3657291","DOIUrl":null,"url":null,"abstract":"<p>Single-modal data has a limitation on fatigue detection, while the shortage of labeled data is pervasive in multimodal sensing data. Besides, it is a time-consuming task for board-certified experts to manually annotate the physiological signals, especially hard for EEG sensor data. To solve this problem, we propose FedUSL (Federated Unified Space Learning), a federated annotation method for multimodal sensing data in the driving fatigue detection scenario, which has the innate ability to exploit more than four multimodal data simultaneously for correlations and complementary with low complexity. To validate the efficiency of the proposed method, we first collect the multimodal data (aka, camera, physiological sensor) through simulated fatigue driving. The data is then preprocessed and features are extracted to form a usable multimodal dataset. Based on the dataset, we analyze the performance of the proposed method. The experimental results demonstrate that FedUSL outperforms other approaches for driver fatigue detection with carefully selected modal combinations, especially when a modality contains only \\(10\\% \\) labeled data.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"27 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FedUSL: A Federated Annotation Method for Driving Fatigue Detection based on Multimodal Sensing Data\",\"authors\":\"Songcan Yu, Qinglin Yang, Junbo Wang, Celimuge Wu\",\"doi\":\"10.1145/3657291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Single-modal data has a limitation on fatigue detection, while the shortage of labeled data is pervasive in multimodal sensing data. Besides, it is a time-consuming task for board-certified experts to manually annotate the physiological signals, especially hard for EEG sensor data. To solve this problem, we propose FedUSL (Federated Unified Space Learning), a federated annotation method for multimodal sensing data in the driving fatigue detection scenario, which has the innate ability to exploit more than four multimodal data simultaneously for correlations and complementary with low complexity. To validate the efficiency of the proposed method, we first collect the multimodal data (aka, camera, physiological sensor) through simulated fatigue driving. The data is then preprocessed and features are extracted to form a usable multimodal dataset. Based on the dataset, we analyze the performance of the proposed method. The experimental results demonstrate that FedUSL outperforms other approaches for driver fatigue detection with carefully selected modal combinations, especially when a modality contains only \\\\(10\\\\% \\\\) labeled data.</p>\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3657291\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3657291","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

单模态数据在疲劳检测方面存在局限性,而多模态传感数据则普遍缺乏标注数据。此外,由经过认证的专家对生理信号进行人工标注是一项耗时的任务,尤其是脑电图传感器数据。为解决这一问题,我们提出了一种针对驾驶疲劳检测场景中多模态传感数据的联合注释方法--FedUSL(联合统一空间学习),它具有同时利用四种以上多模态数据进行关联和互补的先天能力,且复杂度较低。为了验证所提方法的效率,我们首先通过模拟疲劳驾驶收集多模态数据(又称、摄像头、生理传感器)。然后对数据进行预处理并提取特征,形成可用的多模态数据集。基于该数据集,我们分析了所提方法的性能。实验结果表明,在精心选择模态组合的情况下,FedUSL在驾驶员疲劳检测方面的表现优于其他方法,尤其是当一种模态仅包含(10%)标记数据时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FedUSL: A Federated Annotation Method for Driving Fatigue Detection based on Multimodal Sensing Data

Single-modal data has a limitation on fatigue detection, while the shortage of labeled data is pervasive in multimodal sensing data. Besides, it is a time-consuming task for board-certified experts to manually annotate the physiological signals, especially hard for EEG sensor data. To solve this problem, we propose FedUSL (Federated Unified Space Learning), a federated annotation method for multimodal sensing data in the driving fatigue detection scenario, which has the innate ability to exploit more than four multimodal data simultaneously for correlations and complementary with low complexity. To validate the efficiency of the proposed method, we first collect the multimodal data (aka, camera, physiological sensor) through simulated fatigue driving. The data is then preprocessed and features are extracted to form a usable multimodal dataset. Based on the dataset, we analyze the performance of the proposed method. The experimental results demonstrate that FedUSL outperforms other approaches for driver fatigue detection with carefully selected modal combinations, especially when a modality contains only \(10\% \) labeled data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Sensor Networks
ACM Transactions on Sensor Networks 工程技术-电信学
CiteScore
5.90
自引率
7.30%
发文量
131
审稿时长
6 months
期刊介绍: ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.
期刊最新文献
Fair and Robust Federated Learning via Decentralized and Adaptive Aggregation based on Blockchain PnA: Robust Aggregation Against Poisoning Attacks to Federated Learning for Edge Intelligence HCCNet: Hybrid Coupled Cooperative Network for Robust Indoor Localization HDM-GNN: A Heterogeneous Dynamic Multi-view Graph Neural Network for Crime Prediction A DRL-based Partial Charging Algorithm for Wireless Rechargeable Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1