具有 Na+-乙醚-溶剂共价行为的 Bi@C 纳米负极可在极低温度下实现钠的快速储存

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Energy Pub Date : 2024-04-12 DOI:10.1002/cey2.531
Lingli Liu, Siqi Li, Lei Hu, Xin Liang, Wei Yang, Xulai Yang, Kunhong Hu, Chaofeng Hou, Yongsheng Han, Shulei Chou
{"title":"具有 Na+-乙醚-溶剂共价行为的 Bi@C 纳米负极可在极低温度下实现钠的快速储存","authors":"Lingli Liu,&nbsp;Siqi Li,&nbsp;Lei Hu,&nbsp;Xin Liang,&nbsp;Wei Yang,&nbsp;Xulai Yang,&nbsp;Kunhong Hu,&nbsp;Chaofeng Hou,&nbsp;Yongsheng Han,&nbsp;Shulei Chou","doi":"10.1002/cey2.531","DOIUrl":null,"url":null,"abstract":"<p>The low ion transport is a major obstacle for low-temperature (LT) sodium-ion batteries (SIBs). Herein, a core-shell structure of bismuth (Bi) nanospheres coated with carbon (Bi@C) is constructed by utilizing a novel Bi-based complex (1,4,5,8-naphthalenetetracarboxylic dianhydride as the ligand) as the precursor, which provides an effective template to fabricate Bi-based anodes. At −40°C, the Bi@C anode achieves a high capacity, which is equivalent to 96% of that at 25°C, benefitting from the core-shell nanostructured engineering and Na<sup>+</sup>-ether-solvent cointercalation process. The special Na<sup>+</sup>-diglyme cointercalation behavior may effectively reduce the activation energy and accelerate the Na<sup>+</sup> diffusion kinetics, enabling the excellent low-temperature performance of the Bi@C electrode. As expected, the fabricated Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>//Bi@C full-cell delivers impressive rechargeability in the ether-based electrolyte at −40°C. Density functional theory calculations and electrochemical tests also reveal the fast reaction kinetic mechanism at LT, thanks to a much lower diffusion energy barrier (167 meV) and a lower reaction activation energy (32.2 kJ mol<sup>−1</sup>) of Bi@C anode in comparison with that of bulk Bi. This work provides a rational design of Bi-based electrodes for rechargeable SIBs under extreme conditions.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":19.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.531","citationCount":"0","resultStr":"{\"title\":\"Bi@C nanosphere anode with Na+-ether-solvent cointercalation behavior to achieve fast sodium storage under extreme low temperatures\",\"authors\":\"Lingli Liu,&nbsp;Siqi Li,&nbsp;Lei Hu,&nbsp;Xin Liang,&nbsp;Wei Yang,&nbsp;Xulai Yang,&nbsp;Kunhong Hu,&nbsp;Chaofeng Hou,&nbsp;Yongsheng Han,&nbsp;Shulei Chou\",\"doi\":\"10.1002/cey2.531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The low ion transport is a major obstacle for low-temperature (LT) sodium-ion batteries (SIBs). Herein, a core-shell structure of bismuth (Bi) nanospheres coated with carbon (Bi@C) is constructed by utilizing a novel Bi-based complex (1,4,5,8-naphthalenetetracarboxylic dianhydride as the ligand) as the precursor, which provides an effective template to fabricate Bi-based anodes. At −40°C, the Bi@C anode achieves a high capacity, which is equivalent to 96% of that at 25°C, benefitting from the core-shell nanostructured engineering and Na<sup>+</sup>-ether-solvent cointercalation process. The special Na<sup>+</sup>-diglyme cointercalation behavior may effectively reduce the activation energy and accelerate the Na<sup>+</sup> diffusion kinetics, enabling the excellent low-temperature performance of the Bi@C electrode. As expected, the fabricated Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>//Bi@C full-cell delivers impressive rechargeability in the ether-based electrolyte at −40°C. Density functional theory calculations and electrochemical tests also reveal the fast reaction kinetic mechanism at LT, thanks to a much lower diffusion energy barrier (167 meV) and a lower reaction activation energy (32.2 kJ mol<sup>−1</sup>) of Bi@C anode in comparison with that of bulk Bi. This work provides a rational design of Bi-based electrodes for rechargeable SIBs under extreme conditions.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.531\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.531\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.531","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

低离子传输是低温钠离子电池(SIB)的主要障碍。本文以一种新型铋基配合物(1,4,5,8-萘四甲酸二酐为配体)为前驱体,构建了一种铋(Bi)纳米球包覆碳(Bi@C)的核壳结构,为制造铋基阳极提供了一个有效的模板。得益于核壳纳米结构工程和 Na+-乙醚-溶剂共共价过程,Bi@C 阳极在 -40°C 温度下实现了高容量,相当于 25°C 温度下容量的 96%。特殊的 Na+-二甘醇共共价行为可有效降低活化能并加速 Na+扩散动力学,从而使 Bi@C 电极具有优异的低温性能。正如预期的那样,所制备的 Na3V2(PO4)3//Bi@C 全电池在 -40°C 的醚基电解质中具有令人印象深刻的可充电性。密度泛函理论计算和电化学测试还揭示了低温下的快速反应动力学机制,这要归功于 Bi@C 阳极与块状 Bi 相比更低的扩散能垒(167 meV)和更低的反应活化能(32.2 kJ mol-1)。这项研究为极端条件下可充电 SIB 的铋基电极提供了合理的设计方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bi@C nanosphere anode with Na+-ether-solvent cointercalation behavior to achieve fast sodium storage under extreme low temperatures

The low ion transport is a major obstacle for low-temperature (LT) sodium-ion batteries (SIBs). Herein, a core-shell structure of bismuth (Bi) nanospheres coated with carbon (Bi@C) is constructed by utilizing a novel Bi-based complex (1,4,5,8-naphthalenetetracarboxylic dianhydride as the ligand) as the precursor, which provides an effective template to fabricate Bi-based anodes. At −40°C, the Bi@C anode achieves a high capacity, which is equivalent to 96% of that at 25°C, benefitting from the core-shell nanostructured engineering and Na+-ether-solvent cointercalation process. The special Na+-diglyme cointercalation behavior may effectively reduce the activation energy and accelerate the Na+ diffusion kinetics, enabling the excellent low-temperature performance of the Bi@C electrode. As expected, the fabricated Na3V2(PO4)3//Bi@C full-cell delivers impressive rechargeability in the ether-based electrolyte at −40°C. Density functional theory calculations and electrochemical tests also reveal the fast reaction kinetic mechanism at LT, thanks to a much lower diffusion energy barrier (167 meV) and a lower reaction activation energy (32.2 kJ mol−1) of Bi@C anode in comparison with that of bulk Bi. This work provides a rational design of Bi-based electrodes for rechargeable SIBs under extreme conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
期刊最新文献
Issue Information Cover Image, Volume 6, Number 10, October 2024 Back Cover Image, Volume 6, Number 10, October 2024 Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1