{"title":"具有随机时变通信延迟的异构互联车辆排的鲁棒 H∞ 控制","authors":"Shuangkun Ru, Xiaohong Jiao","doi":"10.1177/09596518241236980","DOIUrl":null,"url":null,"abstract":"As an essential component of intelligent transportation systems (ITS), connected cruise control (CCC) has attracted much attention due to its potential to improve vehicle safety and reduce traffic congestion. However, besides the disturbance acting on the head vehicle of the platoon, the time-varying communication delay in vehicle-to-vehicle (V2V) also seriously impacts the CCC system’s stability. In this paper, we investigate a robust control scheme utilizing the Lyapunov-Krasovskii functional stability theory and [Formula: see text] technique to ensure the stability of the CCC system consisting of the connected and automated vehicle (CAV) and connected human-driven vehicles (CHVs) under random time-varying communication delay. The effectiveness and advantage of the designed robust controller are verified by MATLAB/Simulink simulation and comparison with the existing result of the literature.","PeriodicalId":20638,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","volume":"1 2 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust H∞ control of heterogeneous connected vehicles platoon with random time-varying communication delay\",\"authors\":\"Shuangkun Ru, Xiaohong Jiao\",\"doi\":\"10.1177/09596518241236980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an essential component of intelligent transportation systems (ITS), connected cruise control (CCC) has attracted much attention due to its potential to improve vehicle safety and reduce traffic congestion. However, besides the disturbance acting on the head vehicle of the platoon, the time-varying communication delay in vehicle-to-vehicle (V2V) also seriously impacts the CCC system’s stability. In this paper, we investigate a robust control scheme utilizing the Lyapunov-Krasovskii functional stability theory and [Formula: see text] technique to ensure the stability of the CCC system consisting of the connected and automated vehicle (CAV) and connected human-driven vehicles (CHVs) under random time-varying communication delay. The effectiveness and advantage of the designed robust controller are verified by MATLAB/Simulink simulation and comparison with the existing result of the literature.\",\"PeriodicalId\":20638,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"volume\":\"1 2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/09596518241236980\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/09596518241236980","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Robust H∞ control of heterogeneous connected vehicles platoon with random time-varying communication delay
As an essential component of intelligent transportation systems (ITS), connected cruise control (CCC) has attracted much attention due to its potential to improve vehicle safety and reduce traffic congestion. However, besides the disturbance acting on the head vehicle of the platoon, the time-varying communication delay in vehicle-to-vehicle (V2V) also seriously impacts the CCC system’s stability. In this paper, we investigate a robust control scheme utilizing the Lyapunov-Krasovskii functional stability theory and [Formula: see text] technique to ensure the stability of the CCC system consisting of the connected and automated vehicle (CAV) and connected human-driven vehicles (CHVs) under random time-varying communication delay. The effectiveness and advantage of the designed robust controller are verified by MATLAB/Simulink simulation and comparison with the existing result of the literature.
期刊介绍:
Systems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering refleSystems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering reflects this diversity by giving prominence to experimental application and industrial studies.
"It is clear from the feedback we receive that the Journal is now recognised as one of the leaders in its field. We are particularly interested in highlighting experimental applications and industrial studies, but also new theoretical developments which are likely to provide the foundation for future applications. In 2009, we launched a new Series of "Forward Look" papers written by leading researchers and practitioners. These short articles are intended to be provocative and help to set the agenda for future developments. We continue to strive for fast decision times and minimum delays in the production processes." Professor Cliff Burrows - University of Bath, UK
This journal is a member of the Committee on Publication Ethics (COPE).cts this diversity by giving prominence to experimental application and industrial studies.