Xiaobin Zhang, Aoqi Wang, Xingbao Wang, Wenying Li
{"title":"煤直接液化溶剂中氢溶解度的理论分析","authors":"Xiaobin Zhang, Aoqi Wang, Xingbao Wang, Wenying Li","doi":"10.1007/s40789-024-00674-0","DOIUrl":null,"url":null,"abstract":"<p>The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction. Thus, a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents. Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions. In this study, the composition and content of liquefied solvents were analyzed. As model compounds, hexadecane, toluene, naphthalene, tetrahydronaphthalene, and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic, bicyclic, and tricyclic aromatic hydrocarbons. The solubility of hydrogen <i>X</i> (mol/mol) in pure solvent components and mixed solvents (alkanes and aromatics mixed in proportion to the chain alkanes + bicyclic aromatic hydrocarbons, bicyclic saturated aromatic hydrocarbons + bicyclic aromatic hydrocarbons, and bicyclic aromatic hydrocarbons + compounds containing heteroatoms composed of mixed components) are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa. The results demonstrated that at high temperatures and pressures, the solubility of hydrogen in the solvent increases with the increase in temperature and pressure, with the pressure having a greater impact. Furthermore, the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents, and the solubility of eicosanoids reaches a maximum of 0.296. The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number. The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons. The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents. Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"58 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical analysis of hydrogen solubility in direct coal liquefaction solvents\",\"authors\":\"Xiaobin Zhang, Aoqi Wang, Xingbao Wang, Wenying Li\",\"doi\":\"10.1007/s40789-024-00674-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction. Thus, a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents. Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions. In this study, the composition and content of liquefied solvents were analyzed. As model compounds, hexadecane, toluene, naphthalene, tetrahydronaphthalene, and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic, bicyclic, and tricyclic aromatic hydrocarbons. The solubility of hydrogen <i>X</i> (mol/mol) in pure solvent components and mixed solvents (alkanes and aromatics mixed in proportion to the chain alkanes + bicyclic aromatic hydrocarbons, bicyclic saturated aromatic hydrocarbons + bicyclic aromatic hydrocarbons, and bicyclic aromatic hydrocarbons + compounds containing heteroatoms composed of mixed components) are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa. The results demonstrated that at high temperatures and pressures, the solubility of hydrogen in the solvent increases with the increase in temperature and pressure, with the pressure having a greater impact. Furthermore, the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents, and the solubility of eicosanoids reaches a maximum of 0.296. The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number. The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons. The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents. Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms.</p>\",\"PeriodicalId\":53469,\"journal\":{\"name\":\"International Journal of Coal Science & Technology\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coal Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40789-024-00674-0\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-024-00674-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
煤直接液化工艺中的循环加氢技术依赖于参与加氢反应的溶剂或油中的溶解氢。因此,通过分析氢在液化溶剂中的溶解度,可以为工艺优化和反应器设计奠定理论基础。由于反应条件苛刻,溶剂成分复杂,氢在液化溶剂中的溶解度实验研究具有挑战性。本研究分析了液化溶剂的成分和含量。选择十六烷、甲苯、萘、四氢萘和菲作为模型化合物,以代表链烷和单环、双环和三环芳香烃中的液化溶剂。在 373-523 K 和 2-10 MPa 的温度和压力条件下,使用 Aspen 模拟测定了氢 X 在纯溶剂组分和混合溶剂(烷烃和芳香烃按比例混合的链烷烃 + 双环芳香烃、双环饱和芳香烃 + 双环芳香烃、双环芳香烃 + 由混合组分组成的含杂原子的化合物)中的溶解度(mol/mol)。结果表明,在高温高压条件下,氢在溶剂中的溶解度随着温度和压力的升高而增加,其中压力的影响更大。此外,结果表明,氢在直链烷烃中的溶解度比在其他溶剂中的溶解度高,在二十烷烃中的溶解度最高可达 0.296。氢在芳香环化合物中的溶解度随着芳香环数的增加而逐渐降低。在链烷和芳香烃混合比不同的混合溶剂中,链烷对氢溶解度的影响占主导地位。氢在混合芳烃溶剂中的溶解度低于在相应的单一溶剂中的溶解度。氢在含有杂原子的溶剂化合物中的溶解度低于在不含杂原子的化合物中的溶解度。
Theoretical analysis of hydrogen solubility in direct coal liquefaction solvents
The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction. Thus, a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents. Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions. In this study, the composition and content of liquefied solvents were analyzed. As model compounds, hexadecane, toluene, naphthalene, tetrahydronaphthalene, and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic, bicyclic, and tricyclic aromatic hydrocarbons. The solubility of hydrogen X (mol/mol) in pure solvent components and mixed solvents (alkanes and aromatics mixed in proportion to the chain alkanes + bicyclic aromatic hydrocarbons, bicyclic saturated aromatic hydrocarbons + bicyclic aromatic hydrocarbons, and bicyclic aromatic hydrocarbons + compounds containing heteroatoms composed of mixed components) are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa. The results demonstrated that at high temperatures and pressures, the solubility of hydrogen in the solvent increases with the increase in temperature and pressure, with the pressure having a greater impact. Furthermore, the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents, and the solubility of eicosanoids reaches a maximum of 0.296. The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number. The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons. The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents. Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms.
期刊介绍:
The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field.
The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects.
The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.