黎曼流形上的子采样自适应信任区域法

IF 1.8 3区 数学 Q1 MATHEMATICS Numerical Linear Algebra with Applications Pub Date : 2024-04-13 DOI:10.1002/nla.2557
Shimin Zhao, Tao Yan, Yuanguo Zhu
{"title":"黎曼流形上的子采样自适应信任区域法","authors":"Shimin Zhao, Tao Yan, Yuanguo Zhu","doi":"10.1002/nla.2557","DOIUrl":null,"url":null,"abstract":"We consider the problem of large‐scale finite‐sum minimization on Riemannian manifold. We develop a sub‐sampled adaptive trust region method on Riemannian manifolds. Based on inexact information, we adopt adaptive techniques to flexibly adjust the trust region radius in our method. We present the iteration complexity is when the algorithm attains an ‐second‐order stationary point, which matches the result on trust region method. Numerical results for PCA on Grassmann manifold and low‐rank matrix completion are reported to demonstrate the effectiveness of the proposed Riemannian method.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub‐sampled adaptive trust region method on Riemannian manifolds\",\"authors\":\"Shimin Zhao, Tao Yan, Yuanguo Zhu\",\"doi\":\"10.1002/nla.2557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of large‐scale finite‐sum minimization on Riemannian manifold. We develop a sub‐sampled adaptive trust region method on Riemannian manifolds. Based on inexact information, we adopt adaptive techniques to flexibly adjust the trust region radius in our method. We present the iteration complexity is when the algorithm attains an ‐second‐order stationary point, which matches the result on trust region method. Numerical results for PCA on Grassmann manifold and low‐rank matrix completion are reported to demonstrate the effectiveness of the proposed Riemannian method.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2557\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2557","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了黎曼流形上的大规模有限和最小化问题。我们在黎曼流形上开发了一种子采样自适应信任区域方法。基于非精确信息,我们采用自适应技术灵活调整方法中的信任区域半径。我们提出了算法达到二阶静止点时的迭代复杂度,这与信任区域方法的结果相吻合。报告了格拉斯曼流形上 PCA 和低秩矩阵补全的数值结果,以证明所提出的黎曼方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sub‐sampled adaptive trust region method on Riemannian manifolds
We consider the problem of large‐scale finite‐sum minimization on Riemannian manifold. We develop a sub‐sampled adaptive trust region method on Riemannian manifolds. Based on inexact information, we adopt adaptive techniques to flexibly adjust the trust region radius in our method. We present the iteration complexity is when the algorithm attains an ‐second‐order stationary point, which matches the result on trust region method. Numerical results for PCA on Grassmann manifold and low‐rank matrix completion are reported to demonstrate the effectiveness of the proposed Riemannian method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
期刊最新文献
A Family of Inertial Three‐Term CGPMs for Large‐Scale Nonlinear Pseudo‐Monotone Equations With Convex Constraints Signal and image reconstruction with a double parameter Hager–Zhang‐type conjugate gradient method for system of nonlinear equations Superlinear Krylov convergence under streamline diffusion FEM for convection‐dominated elliptic operators On rank‐revealing QR factorizations of quaternion matrices Probabilistic perturbation bounds of matrix decompositions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1