开发用于稀释分散介质流动建模的全拉格朗日方法(综述)

IF 1 4区 工程技术 Q4 MECHANICS Fluid Dynamics Pub Date : 2024-04-04 DOI:10.1134/S0015462823602425
A. N. Osiptsov
{"title":"开发用于稀释分散介质流动建模的全拉格朗日方法(综述)","authors":"A. N. Osiptsov","doi":"10.1134/S0015462823602425","DOIUrl":null,"url":null,"abstract":"<p>Continuum models of media with zero pressure are widely used in various branches of physics and mechanics, including studies of a dilute dispersed phase in multiphase flows. In zero-pressure media, the particle trajectories may intersect, “folds” and “puckers” of the phase volume may arise, and “caustics” (the envelopes of particle trajectories) may appear, near which the density of the medium sharply increases. In recent decades, the phenomena of clustering and aerodynamic focusing of inertial admixture in gas and liquid flows have attracted increasing attention of researchers. This is due to the importance of taking into account the inhomogeneities in the impurity concentration when describing the transport of aerosol pollutants in the environment, the mechanisms of droplet growth in rain clouds, scattering of radiation by dispersed inclusions, initiation of detonation in two-phase mixtures, as well as when solving problems of two-phase aerodynamics, interpretation of measurements obtained by LDV or PIV methods, and in many other applications. These problems gave an impetus to a significant increase in the number of publications devoted to the processes of accumulation and clustering of inertial particles in gas and liquid flows. Within the framework of classical two-fluid models and standard Eulerian approaches assuming single-valuedness of continuum parameters of the media, it turns out impossible to describe zones of multi-valued velocity fields and density singularities in flows with crossing particle trajectories. One of the alternatives is the full Lagrangian approach proposed by the author earlier. In recent years, this approach has been further developed in combination with averaged Eulerian and Lagrangian (vortex-blob method) methods for describing the dynamics of the carrier phase. Such combined approaches made it possible to study the structure of local zones of accumulation of inertial particles in vortex, transient, and turbulent flows.</p><p>This article describes the basic ideas of the full Lagrangian approach, provides examples of the most significant results which illustrate the unique capabilities of the method, and gives an overview of the main directions of further development of the method as applied to transient, vortex, and turbulent flows of “gas-particle” media. Some of the ideas discussed and the results presented below are of a more general interest, since they are also applicable to other models of zero-pressure media.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 1","pages":"1 - 48"},"PeriodicalIF":1.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of the Full Lagrangian Approach for Modeling Dilute Dispersed Media Flows (a Review)\",\"authors\":\"A. N. Osiptsov\",\"doi\":\"10.1134/S0015462823602425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Continuum models of media with zero pressure are widely used in various branches of physics and mechanics, including studies of a dilute dispersed phase in multiphase flows. In zero-pressure media, the particle trajectories may intersect, “folds” and “puckers” of the phase volume may arise, and “caustics” (the envelopes of particle trajectories) may appear, near which the density of the medium sharply increases. In recent decades, the phenomena of clustering and aerodynamic focusing of inertial admixture in gas and liquid flows have attracted increasing attention of researchers. This is due to the importance of taking into account the inhomogeneities in the impurity concentration when describing the transport of aerosol pollutants in the environment, the mechanisms of droplet growth in rain clouds, scattering of radiation by dispersed inclusions, initiation of detonation in two-phase mixtures, as well as when solving problems of two-phase aerodynamics, interpretation of measurements obtained by LDV or PIV methods, and in many other applications. These problems gave an impetus to a significant increase in the number of publications devoted to the processes of accumulation and clustering of inertial particles in gas and liquid flows. Within the framework of classical two-fluid models and standard Eulerian approaches assuming single-valuedness of continuum parameters of the media, it turns out impossible to describe zones of multi-valued velocity fields and density singularities in flows with crossing particle trajectories. One of the alternatives is the full Lagrangian approach proposed by the author earlier. In recent years, this approach has been further developed in combination with averaged Eulerian and Lagrangian (vortex-blob method) methods for describing the dynamics of the carrier phase. Such combined approaches made it possible to study the structure of local zones of accumulation of inertial particles in vortex, transient, and turbulent flows.</p><p>This article describes the basic ideas of the full Lagrangian approach, provides examples of the most significant results which illustrate the unique capabilities of the method, and gives an overview of the main directions of further development of the method as applied to transient, vortex, and turbulent flows of “gas-particle” media. Some of the ideas discussed and the results presented below are of a more general interest, since they are also applicable to other models of zero-pressure media.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"59 1\",\"pages\":\"1 - 48\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0015462823602425\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462823602425","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 零压介质的连续模型广泛应用于物理学和力学的各个分支,包括多相流中稀释分散相的研究。在零压介质中,粒子轨迹可能相交,相体积可能出现 "褶皱 "和 "皱褶",还可能出现 "凹陷"(粒子轨迹的包络线),介质密度在其附近急剧增加。近几十年来,气体和液体流动中惯性掺合物的聚集和空气动力聚焦现象引起了研究人员越来越多的关注。这是因为在描述环境中气溶胶污染物的传输、雨云中水滴的生长机制、分散夹杂物对辐射的散射、两相混合物中的起爆、解决两相空气动力学问题、解释 LDV 或 PIV 方法获得的测量结果以及许多其他应用时,必须考虑杂质浓度的不均匀性。在这些问题的推动下,专门研究气体和液体流动中惯性粒子的堆积和聚集过程的出版物数量大幅增加。在经典双流体模型和标准欧拉方法(假设介质连续参数为单值)的框架内,要描述粒子轨迹交叉流动中的多值速度场和密度奇点区是不可能的。替代方法之一是作者早先提出的全拉格朗日方法。近年来,这种方法结合平均欧拉和拉格朗日(涡球法)方法得到了进一步发展,用于描述载流相的动力学。本文介绍了全拉格朗日方法的基本思想,举例说明了该方法的独特能力,并概述了将该方法应用于 "气体-颗粒 "介质的瞬态、涡旋和湍流时进一步发展的主要方向。下面讨论的一些观点和结果具有更广泛的意义,因为它们也适用于其他零压介质模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of the Full Lagrangian Approach for Modeling Dilute Dispersed Media Flows (a Review)

Continuum models of media with zero pressure are widely used in various branches of physics and mechanics, including studies of a dilute dispersed phase in multiphase flows. In zero-pressure media, the particle trajectories may intersect, “folds” and “puckers” of the phase volume may arise, and “caustics” (the envelopes of particle trajectories) may appear, near which the density of the medium sharply increases. In recent decades, the phenomena of clustering and aerodynamic focusing of inertial admixture in gas and liquid flows have attracted increasing attention of researchers. This is due to the importance of taking into account the inhomogeneities in the impurity concentration when describing the transport of aerosol pollutants in the environment, the mechanisms of droplet growth in rain clouds, scattering of radiation by dispersed inclusions, initiation of detonation in two-phase mixtures, as well as when solving problems of two-phase aerodynamics, interpretation of measurements obtained by LDV or PIV methods, and in many other applications. These problems gave an impetus to a significant increase in the number of publications devoted to the processes of accumulation and clustering of inertial particles in gas and liquid flows. Within the framework of classical two-fluid models and standard Eulerian approaches assuming single-valuedness of continuum parameters of the media, it turns out impossible to describe zones of multi-valued velocity fields and density singularities in flows with crossing particle trajectories. One of the alternatives is the full Lagrangian approach proposed by the author earlier. In recent years, this approach has been further developed in combination with averaged Eulerian and Lagrangian (vortex-blob method) methods for describing the dynamics of the carrier phase. Such combined approaches made it possible to study the structure of local zones of accumulation of inertial particles in vortex, transient, and turbulent flows.

This article describes the basic ideas of the full Lagrangian approach, provides examples of the most significant results which illustrate the unique capabilities of the method, and gives an overview of the main directions of further development of the method as applied to transient, vortex, and turbulent flows of “gas-particle” media. Some of the ideas discussed and the results presented below are of a more general interest, since they are also applicable to other models of zero-pressure media.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
期刊最新文献
Development of the Deposit Formation Similarity Criterion with the Electrochemical Number Direct Statistical Modeling of Oxygen Radiation behind a Shock Wave Treatment of the Thermal Nonequilibrium and Ionization Effects on the Refractive Index of a Reacting Gas: Atmospheric Air and Combustion Products Formation of Three-Phase Cavitation Bubbles with Their Own Electric Field in a Hydrophobic Liquid Numerical Simulation of Vapor Bulk Condensation near the Interfacial Surface under Intensive Evaporation Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1