Mohammad Zahirul Islam Mollah, Md. Sumon Miah, Md. Washim Akram, Sayed Hasan Mahmud, Mohammad Rashed Iqbal Faruque, Kholoud Saad Al-mugren
{"title":"香蕉/甜果壳纤维增强热塑性聚合物基复合材料:物理机械性能评估","authors":"Mohammad Zahirul Islam Mollah, Md. Sumon Miah, Md. Washim Akram, Sayed Hasan Mahmud, Mohammad Rashed Iqbal Faruque, Kholoud Saad Al-mugren","doi":"10.1515/epoly-2023-0158","DOIUrl":null,"url":null,"abstract":"Reinforced composite made of polypropylene combining banana and betel nut husk fiber (BBF) was treated with 10% NaOH (w/w). The fiber percentages of 40%, 50%, and 60% were used using the compression molding process. Properties such as tensile, bending, impact, thermogravimetric analysis (TGA), and water absorption were assessed as composite reinforcements. The composites with 50% BBF reinforcement performed better than composites with different fiber compositions. While 40% BBF-reinforced showed superior results in tensile, bending, and water absorption tests, the impact and TGA analyses provided comparatively lower results. The tensile strength (36 MPa), bending strength (78 MPa), energy absorption (2.4 Nm), thermal resistance (300–583°), and the maximum level of characteristics were attained. This work demonstrated the feasibility of repurposing waste banana stems and betel nut husks for interior decoration, furniture, and automobile bodies in fiber-reinforced hybrid composites, replacing expensive and environmentally hazardous artificial materials due to their mechanical capabilities.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"58 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoplastic-polymer matrix composite of banana/betel nut husk fiber reinforcement: Physico-mechanical properties evaluation\",\"authors\":\"Mohammad Zahirul Islam Mollah, Md. Sumon Miah, Md. Washim Akram, Sayed Hasan Mahmud, Mohammad Rashed Iqbal Faruque, Kholoud Saad Al-mugren\",\"doi\":\"10.1515/epoly-2023-0158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforced composite made of polypropylene combining banana and betel nut husk fiber (BBF) was treated with 10% NaOH (w/w). The fiber percentages of 40%, 50%, and 60% were used using the compression molding process. Properties such as tensile, bending, impact, thermogravimetric analysis (TGA), and water absorption were assessed as composite reinforcements. The composites with 50% BBF reinforcement performed better than composites with different fiber compositions. While 40% BBF-reinforced showed superior results in tensile, bending, and water absorption tests, the impact and TGA analyses provided comparatively lower results. The tensile strength (36 MPa), bending strength (78 MPa), energy absorption (2.4 Nm), thermal resistance (300–583°), and the maximum level of characteristics were attained. This work demonstrated the feasibility of repurposing waste banana stems and betel nut husks for interior decoration, furniture, and automobile bodies in fiber-reinforced hybrid composites, replacing expensive and environmentally hazardous artificial materials due to their mechanical capabilities.\",\"PeriodicalId\":11806,\"journal\":{\"name\":\"e-Polymers\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/epoly-2023-0158\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0158","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Reinforced composite made of polypropylene combining banana and betel nut husk fiber (BBF) was treated with 10% NaOH (w/w). The fiber percentages of 40%, 50%, and 60% were used using the compression molding process. Properties such as tensile, bending, impact, thermogravimetric analysis (TGA), and water absorption were assessed as composite reinforcements. The composites with 50% BBF reinforcement performed better than composites with different fiber compositions. While 40% BBF-reinforced showed superior results in tensile, bending, and water absorption tests, the impact and TGA analyses provided comparatively lower results. The tensile strength (36 MPa), bending strength (78 MPa), energy absorption (2.4 Nm), thermal resistance (300–583°), and the maximum level of characteristics were attained. This work demonstrated the feasibility of repurposing waste banana stems and betel nut husks for interior decoration, furniture, and automobile bodies in fiber-reinforced hybrid composites, replacing expensive and environmentally hazardous artificial materials due to their mechanical capabilities.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.