Ahmad Adlie Shamsuri, Khalina Abdan, Mohd Zuhri Mohamed Yusoff, Siti Nurul Ain Md. Jamil
{"title":"离子液体对聚合物复合材料热性能的影响","authors":"Ahmad Adlie Shamsuri, Khalina Abdan, Mohd Zuhri Mohamed Yusoff, Siti Nurul Ain Md. Jamil","doi":"10.1515/epoly-2024-0020","DOIUrl":null,"url":null,"abstract":"The integration of ionic liquids and polymer composites has become a promising way to improve their thermal properties, representing a notable advancement in the development of advanced materials for specific applications. Their thermal properties heavily influence the suitability of polymer composites for particular applications. It is imperative to understand and manipulate the thermal behavior of these composites to optimize their performance across various fields. In this mini-review, diverse polymer matrices and fillers utilized in polymer composites containing ionic liquids are categorized. Additionally, various ionic liquids employed in studies related to the thermal properties of polymer composites are identified. The impact of ionic liquids on the thermal properties of these composites is also briefly reviewed. The knowledge illustrated in this review enriches the understanding of the types of polymer matrices and fillers used in conjunction with ionic liquids, as well as their thermal properties. In a nutshell, imidazolium-based ionic liquids with tetrafluoroborate, bis(trifluoromethylsulfonyl)imide, hexafluorophosphate, halides, and hydrogen sulfate anions have the impact of improving the glass transition temperature, melting temperature, degradation temperature, and thermal conductivity of thermoplastic, thermosetting, and elastomer composites.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of ionic liquids on the thermal properties of polymer composites\",\"authors\":\"Ahmad Adlie Shamsuri, Khalina Abdan, Mohd Zuhri Mohamed Yusoff, Siti Nurul Ain Md. Jamil\",\"doi\":\"10.1515/epoly-2024-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of ionic liquids and polymer composites has become a promising way to improve their thermal properties, representing a notable advancement in the development of advanced materials for specific applications. Their thermal properties heavily influence the suitability of polymer composites for particular applications. It is imperative to understand and manipulate the thermal behavior of these composites to optimize their performance across various fields. In this mini-review, diverse polymer matrices and fillers utilized in polymer composites containing ionic liquids are categorized. Additionally, various ionic liquids employed in studies related to the thermal properties of polymer composites are identified. The impact of ionic liquids on the thermal properties of these composites is also briefly reviewed. The knowledge illustrated in this review enriches the understanding of the types of polymer matrices and fillers used in conjunction with ionic liquids, as well as their thermal properties. In a nutshell, imidazolium-based ionic liquids with tetrafluoroborate, bis(trifluoromethylsulfonyl)imide, hexafluorophosphate, halides, and hydrogen sulfate anions have the impact of improving the glass transition temperature, melting temperature, degradation temperature, and thermal conductivity of thermoplastic, thermosetting, and elastomer composites.\",\"PeriodicalId\":11806,\"journal\":{\"name\":\"e-Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/epoly-2024-0020\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2024-0020","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Impact of ionic liquids on the thermal properties of polymer composites
The integration of ionic liquids and polymer composites has become a promising way to improve their thermal properties, representing a notable advancement in the development of advanced materials for specific applications. Their thermal properties heavily influence the suitability of polymer composites for particular applications. It is imperative to understand and manipulate the thermal behavior of these composites to optimize their performance across various fields. In this mini-review, diverse polymer matrices and fillers utilized in polymer composites containing ionic liquids are categorized. Additionally, various ionic liquids employed in studies related to the thermal properties of polymer composites are identified. The impact of ionic liquids on the thermal properties of these composites is also briefly reviewed. The knowledge illustrated in this review enriches the understanding of the types of polymer matrices and fillers used in conjunction with ionic liquids, as well as their thermal properties. In a nutshell, imidazolium-based ionic liquids with tetrafluoroborate, bis(trifluoromethylsulfonyl)imide, hexafluorophosphate, halides, and hydrogen sulfate anions have the impact of improving the glass transition temperature, melting temperature, degradation temperature, and thermal conductivity of thermoplastic, thermosetting, and elastomer composites.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.