Fatma Zehra Erkoc-Biradli, Berkay Erenay, Alp Ozgun, Hayriye Öztatlı, Ferda Işık, Utku Ateş, Rıfat Rasier, Bora Garipcan
{"title":"间充质干细胞衍生的外泌体增强羊膜提取物促进角膜角质细胞增殖","authors":"Fatma Zehra Erkoc-Biradli, Berkay Erenay, Alp Ozgun, Hayriye Öztatlı, Ferda Işık, Utku Ateş, Rıfat Rasier, Bora Garipcan","doi":"10.1002/btpr.3465","DOIUrl":null,"url":null,"abstract":"<p>Amniotic membrane extract (AME) and Wharton's jelly mesenchymal stem cells derived-exosomes (WJ-MSC-Exos) are promising therapeutic solutions explored for their potential in tissue engineering and regenerative medicine, particularly in skin and corneal wound healing applications. AME is an extract form of human amniotic membrane and known to contain a plethora of cytokines and growth factors, making it a highly attractive option for topical applications. Similarly, WJ-MSC-Exos have garnered significant interest for their wound healing properties. Although WJ-MSC-Exos and AME have been used separately for wound healing research, their combined synergistic effects have not been studied extensively. In this study, we evaluated the effects of both AME and WJ-MSC-Exos, individually and together, on the proliferation of corneal keratocytes as well as their ability to promote in vitro cell migration, wound healing, and their impact on cellular morphology. Our findings indicated that the presence of both exosomes (3 × 10<sup>5</sup> Exo/mL) and AME (50 μg/mL) synergistically enhance the proliferation of corneal keratocytes. Combined use of these solutions (3 × 10<sup>5</sup> Exo/mL + 50 μg/mL) increased cell proliferation compared to only 50 μg/mL AME treatment on day 3 (**** <i>p</i> < 0.0001). This mixture treatment (3 × 10<sup>5</sup> Exo/mL + 50 μg/mL) increased wound closure rate compared to isolated WJ-MSC-Exo treatment (3 × 10<sup>5</sup> Exo/mL) (*<i>p</i> < 0.05). Overall, corneal keratocytes treated with AME and WJ-MSC-Exo (3 × 10<sup>5</sup> Exo/mL + 50 μg/mL) mixture resulted in enhanced proliferation and wound healing tendency. Utilization of combined use of AME and WJ-MSC-Exo can pave the way for a promising foundation for corneal repair research.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesenchymal stem cells derived-exosomes enhanced amniotic membrane extract promotes corneal keratocyte proliferation\",\"authors\":\"Fatma Zehra Erkoc-Biradli, Berkay Erenay, Alp Ozgun, Hayriye Öztatlı, Ferda Işık, Utku Ateş, Rıfat Rasier, Bora Garipcan\",\"doi\":\"10.1002/btpr.3465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Amniotic membrane extract (AME) and Wharton's jelly mesenchymal stem cells derived-exosomes (WJ-MSC-Exos) are promising therapeutic solutions explored for their potential in tissue engineering and regenerative medicine, particularly in skin and corneal wound healing applications. AME is an extract form of human amniotic membrane and known to contain a plethora of cytokines and growth factors, making it a highly attractive option for topical applications. Similarly, WJ-MSC-Exos have garnered significant interest for their wound healing properties. Although WJ-MSC-Exos and AME have been used separately for wound healing research, their combined synergistic effects have not been studied extensively. In this study, we evaluated the effects of both AME and WJ-MSC-Exos, individually and together, on the proliferation of corneal keratocytes as well as their ability to promote in vitro cell migration, wound healing, and their impact on cellular morphology. Our findings indicated that the presence of both exosomes (3 × 10<sup>5</sup> Exo/mL) and AME (50 μg/mL) synergistically enhance the proliferation of corneal keratocytes. Combined use of these solutions (3 × 10<sup>5</sup> Exo/mL + 50 μg/mL) increased cell proliferation compared to only 50 μg/mL AME treatment on day 3 (**** <i>p</i> < 0.0001). This mixture treatment (3 × 10<sup>5</sup> Exo/mL + 50 μg/mL) increased wound closure rate compared to isolated WJ-MSC-Exo treatment (3 × 10<sup>5</sup> Exo/mL) (*<i>p</i> < 0.05). Overall, corneal keratocytes treated with AME and WJ-MSC-Exo (3 × 10<sup>5</sup> Exo/mL + 50 μg/mL) mixture resulted in enhanced proliferation and wound healing tendency. Utilization of combined use of AME and WJ-MSC-Exo can pave the way for a promising foundation for corneal repair research.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3465\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3465","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Amniotic membrane extract (AME) and Wharton's jelly mesenchymal stem cells derived-exosomes (WJ-MSC-Exos) are promising therapeutic solutions explored for their potential in tissue engineering and regenerative medicine, particularly in skin and corneal wound healing applications. AME is an extract form of human amniotic membrane and known to contain a plethora of cytokines and growth factors, making it a highly attractive option for topical applications. Similarly, WJ-MSC-Exos have garnered significant interest for their wound healing properties. Although WJ-MSC-Exos and AME have been used separately for wound healing research, their combined synergistic effects have not been studied extensively. In this study, we evaluated the effects of both AME and WJ-MSC-Exos, individually and together, on the proliferation of corneal keratocytes as well as their ability to promote in vitro cell migration, wound healing, and their impact on cellular morphology. Our findings indicated that the presence of both exosomes (3 × 105 Exo/mL) and AME (50 μg/mL) synergistically enhance the proliferation of corneal keratocytes. Combined use of these solutions (3 × 105 Exo/mL + 50 μg/mL) increased cell proliferation compared to only 50 μg/mL AME treatment on day 3 (**** p < 0.0001). This mixture treatment (3 × 105 Exo/mL + 50 μg/mL) increased wound closure rate compared to isolated WJ-MSC-Exo treatment (3 × 105 Exo/mL) (*p < 0.05). Overall, corneal keratocytes treated with AME and WJ-MSC-Exo (3 × 105 Exo/mL + 50 μg/mL) mixture resulted in enhanced proliferation and wound healing tendency. Utilization of combined use of AME and WJ-MSC-Exo can pave the way for a promising foundation for corneal repair research.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.