{"title":"带粗糙表面的气体推力轴承中的滑动流动和热特性","authors":"Cheng Xiong, Bo Xu, Zhenqian Chen","doi":"10.1108/ilt-10-2023-0318","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>In this study, a model of gas lubrication thrust bearing was established by modifying the wall roughness and considering rarefaction effect. The flow and lubrication characteristics of gas film were discussed based on the equivalent sand roughness model and rarefaction effect.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The boundary slip and the surface roughness effect lead to a decrease in gas film pressure and temperature, with a maximum decrease of 39.2% and 8.4%, respectively. The vortex effect present in the gas film is closely linked to the gas film’s pressure. Slip flow decreases the vortex effect, and an increase in roughness results in the development of slip flow. The increase of roughness leads to a decrease for the static and thermal characteristics.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This work uses the rarefaction effect and the equivalent sand roughness model to investigate the lubrication characteristics of gas thrust bearing. The results help to guide the selection of the surface roughness of rotor and bearing, so as to fully control the rarefaction effect and make use of it.</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"86 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slip flow and thermal characteristics in gas thrust bearings with rough surfaces\",\"authors\":\"Cheng Xiong, Bo Xu, Zhenqian Chen\",\"doi\":\"10.1108/ilt-10-2023-0318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>In this study, a model of gas lubrication thrust bearing was established by modifying the wall roughness and considering rarefaction effect. The flow and lubrication characteristics of gas film were discussed based on the equivalent sand roughness model and rarefaction effect.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The boundary slip and the surface roughness effect lead to a decrease in gas film pressure and temperature, with a maximum decrease of 39.2% and 8.4%, respectively. The vortex effect present in the gas film is closely linked to the gas film’s pressure. Slip flow decreases the vortex effect, and an increase in roughness results in the development of slip flow. The increase of roughness leads to a decrease for the static and thermal characteristics.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This work uses the rarefaction effect and the equivalent sand roughness model to investigate the lubrication characteristics of gas thrust bearing. The results help to guide the selection of the surface roughness of rotor and bearing, so as to fully control the rarefaction effect and make use of it.</p><!--/ Abstract__block -->\",\"PeriodicalId\":13523,\"journal\":{\"name\":\"Industrial Lubrication and Tribology\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Lubrication and Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ilt-10-2023-0318\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Lubrication and Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-10-2023-0318","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Slip flow and thermal characteristics in gas thrust bearings with rough surfaces
Purpose
This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.
Design/methodology/approach
In this study, a model of gas lubrication thrust bearing was established by modifying the wall roughness and considering rarefaction effect. The flow and lubrication characteristics of gas film were discussed based on the equivalent sand roughness model and rarefaction effect.
Findings
The boundary slip and the surface roughness effect lead to a decrease in gas film pressure and temperature, with a maximum decrease of 39.2% and 8.4%, respectively. The vortex effect present in the gas film is closely linked to the gas film’s pressure. Slip flow decreases the vortex effect, and an increase in roughness results in the development of slip flow. The increase of roughness leads to a decrease for the static and thermal characteristics.
Originality/value
This work uses the rarefaction effect and the equivalent sand roughness model to investigate the lubrication characteristics of gas thrust bearing. The results help to guide the selection of the surface roughness of rotor and bearing, so as to fully control the rarefaction effect and make use of it.
期刊介绍:
Industrial Lubrication and Tribology provides a broad coverage of the materials and techniques employed in tribology. It contains a firm technical news element which brings together and promotes best practice in the three disciplines of tribology, which comprise lubrication, wear and friction. ILT also follows the progress of research into advanced lubricants, bearings, seals, gears and related machinery parts, as well as materials selection. A double-blind peer review process involving the editor and other subject experts ensures the content''s validity and relevance.