利用共融超顺磁性纳米粒子去除废水中的金属离子

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Chemical Engineering & Technology Pub Date : 2024-04-01 DOI:10.1002/ceat.202300306
Dhanya Vishnu, Dr. Balaji Dhandapani, Dr. Sivapriya Vijayasimhan, Arasi Rajendran, Madhav Mukunthan, Mohan Pandiyan, Aadithya Shankar, Dr. K. Senthilkumar
{"title":"利用共融超顺磁性纳米粒子去除废水中的金属离子","authors":"Dhanya Vishnu,&nbsp;Dr. Balaji Dhandapani,&nbsp;Dr. Sivapriya Vijayasimhan,&nbsp;Arasi Rajendran,&nbsp;Madhav Mukunthan,&nbsp;Mohan Pandiyan,&nbsp;Aadithya Shankar,&nbsp;Dr. K. Senthilkumar","doi":"10.1002/ceat.202300306","DOIUrl":null,"url":null,"abstract":"<p>The column performance of silica-coated, amino-functionalized, superparamagnetic nanoparticles co-integrated with <i>Cynodon dactylon</i> and <i>Murraya koenigii</i> plant extracts for the removal of Cu<sup>II</sup> ions was evaluated. The co-integrated nanoparticles were used as sorbent materials in fixed-bed column studies, and the effects of inlet concentration, adsorbent bed depth, and flow rate were analyzed. Breakthrough time was calculated for various Cu<sup>II</sup> inlet concentrations, depths of the adsorbent bed, and volumetric flow rates. Models such as Thomas, Yoon-Nelson, and the bed depth model were evaluated to determine the experimental fit. The maximum breakthrough time for Cu<sup>II</sup> ions of 1200 min was attained for a Cu<sup>II</sup> inlet concentration of 100 mg L<sup>–1</sup>, sorbent bed depth of 3 cm, and volumetric flow rate of 1 mL min<sup>–1</sup>.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal of Metal Ions from Wastewater Using Co-integrated Superparamagnetic Nanoparticles\",\"authors\":\"Dhanya Vishnu,&nbsp;Dr. Balaji Dhandapani,&nbsp;Dr. Sivapriya Vijayasimhan,&nbsp;Arasi Rajendran,&nbsp;Madhav Mukunthan,&nbsp;Mohan Pandiyan,&nbsp;Aadithya Shankar,&nbsp;Dr. K. Senthilkumar\",\"doi\":\"10.1002/ceat.202300306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The column performance of silica-coated, amino-functionalized, superparamagnetic nanoparticles co-integrated with <i>Cynodon dactylon</i> and <i>Murraya koenigii</i> plant extracts for the removal of Cu<sup>II</sup> ions was evaluated. The co-integrated nanoparticles were used as sorbent materials in fixed-bed column studies, and the effects of inlet concentration, adsorbent bed depth, and flow rate were analyzed. Breakthrough time was calculated for various Cu<sup>II</sup> inlet concentrations, depths of the adsorbent bed, and volumetric flow rates. Models such as Thomas, Yoon-Nelson, and the bed depth model were evaluated to determine the experimental fit. The maximum breakthrough time for Cu<sup>II</sup> ions of 1200 min was attained for a Cu<sup>II</sup> inlet concentration of 100 mg L<sup>–1</sup>, sorbent bed depth of 3 cm, and volumetric flow rate of 1 mL min<sup>–1</sup>.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300306\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300306","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

评估了二氧化硅包覆、氨基功能化、超顺磁性纳米粒子与仙人掌和榧子植物提取物共整合去除 CuII 离子的柱性能。在固定床柱研究中将共整合纳米颗粒用作吸附剂材料,并分析了入口浓度、吸附剂床层深度和流速的影响。计算了不同 CuII 入口浓度、吸附剂床深度和体积流量下的突破时间。对托马斯模型、Yoon-Nelson 模型和床层深度模型进行了评估,以确定实验拟合度。在 CuII 入口浓度为 100 毫克/升、吸附剂床层深度为 3 厘米、体积流量为 1 毫升/分钟时,CuII 离子的最大突破时间为 1200 分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Removal of Metal Ions from Wastewater Using Co-integrated Superparamagnetic Nanoparticles

The column performance of silica-coated, amino-functionalized, superparamagnetic nanoparticles co-integrated with Cynodon dactylon and Murraya koenigii plant extracts for the removal of CuII ions was evaluated. The co-integrated nanoparticles were used as sorbent materials in fixed-bed column studies, and the effects of inlet concentration, adsorbent bed depth, and flow rate were analyzed. Breakthrough time was calculated for various CuII inlet concentrations, depths of the adsorbent bed, and volumetric flow rates. Models such as Thomas, Yoon-Nelson, and the bed depth model were evaluated to determine the experimental fit. The maximum breakthrough time for CuII ions of 1200 min was attained for a CuII inlet concentration of 100 mg L–1, sorbent bed depth of 3 cm, and volumetric flow rate of 1 mL min–1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
期刊最新文献
Cover Picture: Chem. Eng. Technol. 11/2024 Editorial Board: Chem. Eng. Technol. 11/2024 Overview Contents: Chem. Eng. Technol. 11/2024 Photoelectrochemical Technology for Solar Fuel: Green Hydrogen, Carbon Dioxide Capture, and Ammonia Production Cover Picture: Chem. Eng. Technol. 10/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1