{"title":"利用传热和传质模型预测渐冻式海水淡化工艺的生产率","authors":"Abdul Najim","doi":"10.1002/ceat.202300485","DOIUrl":null,"url":null,"abstract":"<p>Predicting the productivity of the freeze desalination process is of key importance. This paper describes an analytical method to predict the productivity for the progressive freeze desalination process utilizing the rectangular channel crystallizer design. The mass of ice produced during the process is considered a measure of productivity. The model was developed using heat and mass transfer modeling. The effect of coolant temperature (from −8 to −16 °C), liquid flow rate (4400–6000 mL min<sup>−1</sup>), and initial salt concentration of the liquid (1.5–7 wt%) on the mass of ice produced was investigated. The analytical results of the mass of ice produced were compared with the experimental data. A plausible match was found between the analytical and experimental results, with an error range between 6 % and 9 %. The model can predict the mass of ice produced for given values of the initial salt concentration of the liquid, initial mass of the liquid, salt concentration of thawed ice, liquid flow rate, and coolant temperature.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Productivity Prediction for the Progressive Freeze Desalination Process Using Heat and Mass Transfer Modeling\",\"authors\":\"Abdul Najim\",\"doi\":\"10.1002/ceat.202300485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Predicting the productivity of the freeze desalination process is of key importance. This paper describes an analytical method to predict the productivity for the progressive freeze desalination process utilizing the rectangular channel crystallizer design. The mass of ice produced during the process is considered a measure of productivity. The model was developed using heat and mass transfer modeling. The effect of coolant temperature (from −8 to −16 °C), liquid flow rate (4400–6000 mL min<sup>−1</sup>), and initial salt concentration of the liquid (1.5–7 wt%) on the mass of ice produced was investigated. The analytical results of the mass of ice produced were compared with the experimental data. A plausible match was found between the analytical and experimental results, with an error range between 6 % and 9 %. The model can predict the mass of ice produced for given values of the initial salt concentration of the liquid, initial mass of the liquid, salt concentration of thawed ice, liquid flow rate, and coolant temperature.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300485\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300485","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Productivity Prediction for the Progressive Freeze Desalination Process Using Heat and Mass Transfer Modeling
Predicting the productivity of the freeze desalination process is of key importance. This paper describes an analytical method to predict the productivity for the progressive freeze desalination process utilizing the rectangular channel crystallizer design. The mass of ice produced during the process is considered a measure of productivity. The model was developed using heat and mass transfer modeling. The effect of coolant temperature (from −8 to −16 °C), liquid flow rate (4400–6000 mL min−1), and initial salt concentration of the liquid (1.5–7 wt%) on the mass of ice produced was investigated. The analytical results of the mass of ice produced were compared with the experimental data. A plausible match was found between the analytical and experimental results, with an error range between 6 % and 9 %. The model can predict the mass of ice produced for given values of the initial salt concentration of the liquid, initial mass of the liquid, salt concentration of thawed ice, liquid flow rate, and coolant temperature.
期刊介绍:
This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering.
Chemical Engineering & Technology is:
Competent with contributions written and refereed by outstanding professionals from around the world.
Essential because it is an international forum for the exchange of ideas and experiences.
Topical because its articles treat the very latest developments in the field.