静态和动态环境中蚂蚁足迹形成和维持的随机模型

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm Intelligence Pub Date : 2024-04-13 DOI:10.1007/s11721-024-00237-8
Katarína Dodoková, Miriam Malíčková, Christian Yates, Audrey Dussutour, Katarína Bod’ová
{"title":"静态和动态环境中蚂蚁足迹形成和维持的随机模型","authors":"Katarína Dodoková, Miriam Malíčková, Christian Yates, Audrey Dussutour, Katarína Bod’ová","doi":"10.1007/s11721-024-00237-8","DOIUrl":null,"url":null,"abstract":"<p>Colonies of ants can complete complex tasks without the need for centralised control as a result of interactions between individuals and their environment. Particularly remarkable is the process of path selection between the nest and food sources that is essential for successful foraging. We have designed a stochastic model of ant foraging in the absence of direct communication. The motion of ants is governed by two components - a random change in direction of motion that improves ability to explore the environment, and a non-random global indirect interaction component based on pheromone signalling. Our model couples individual-based off-lattice ant simulations with an on-lattice characterisation of the pheromone diffusion. Using numerical simulations we have tested three pheromone-based model alternatives: (1) a single pheromone laid on the way toward the food source and on the way back to the nest; (2) single pheromone laid on the way toward the food source and an internal imperfect compass to navigate toward the nest; (3) two different pheromones, each used for one direction. We have studied the model behaviour in different parameter regimes and tested the ability of our simulated ants to form trails and adapt to environmental changes. The simulated ants behaviour reproduced the behaviours observed experimentally. Furthermore we tested two biological hypotheses on the impact of the quality of the food source on the dynamics. We found that increasing pheromone deposition for the richer food sources has a larger impact on the dynamics than elevation of the ant recruitment level for the richer food sources.</p>","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"26 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stochastic model of ant trail formation and maintenance in static and dynamic environments\",\"authors\":\"Katarína Dodoková, Miriam Malíčková, Christian Yates, Audrey Dussutour, Katarína Bod’ová\",\"doi\":\"10.1007/s11721-024-00237-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Colonies of ants can complete complex tasks without the need for centralised control as a result of interactions between individuals and their environment. Particularly remarkable is the process of path selection between the nest and food sources that is essential for successful foraging. We have designed a stochastic model of ant foraging in the absence of direct communication. The motion of ants is governed by two components - a random change in direction of motion that improves ability to explore the environment, and a non-random global indirect interaction component based on pheromone signalling. Our model couples individual-based off-lattice ant simulations with an on-lattice characterisation of the pheromone diffusion. Using numerical simulations we have tested three pheromone-based model alternatives: (1) a single pheromone laid on the way toward the food source and on the way back to the nest; (2) single pheromone laid on the way toward the food source and an internal imperfect compass to navigate toward the nest; (3) two different pheromones, each used for one direction. We have studied the model behaviour in different parameter regimes and tested the ability of our simulated ants to form trails and adapt to environmental changes. The simulated ants behaviour reproduced the behaviours observed experimentally. Furthermore we tested two biological hypotheses on the impact of the quality of the food source on the dynamics. We found that increasing pheromone deposition for the richer food sources has a larger impact on the dynamics than elevation of the ant recruitment level for the richer food sources.</p>\",\"PeriodicalId\":51284,\"journal\":{\"name\":\"Swarm Intelligence\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11721-024-00237-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11721-024-00237-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于个体与环境之间的相互作用,蚂蚁群可以在不需要集中控制的情况下完成复杂的任务。尤其引人注目的是蚁巢与食物来源之间的路径选择过程,这是成功觅食的关键。我们设计了一个没有直接交流的蚂蚁觅食随机模型。蚂蚁的运动受两个部分的支配:一个是随机改变运动方向,以提高探索环境的能力;另一个是基于信息素信号的非随机全球间接互动部分。我们的模型将基于个体的离格蚂蚁模拟与信息素扩散的格上特性相结合。通过数值模拟,我们测试了三种基于信息素的替代模型:(1)在前往食物源的途中和返回巢穴的途中使用单一信息素;(2)在前往食物源的途中使用单一信息素,并使用内部不完全指南针向巢穴方向导航;(3)使用两种不同的信息素,每种信息素用于一个方向。我们研究了模型在不同参数条件下的行为,并测试了模拟蚂蚁形成足迹和适应环境变化的能力。模拟蚂蚁的行为再现了实验观察到的行为。此外,我们还测试了食物源质量对动态影响的两个生物学假设。我们发现,增加富含食物源的信息素沉积对动态的影响比提高富含食物源的蚂蚁招募水平更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A stochastic model of ant trail formation and maintenance in static and dynamic environments

Colonies of ants can complete complex tasks without the need for centralised control as a result of interactions between individuals and their environment. Particularly remarkable is the process of path selection between the nest and food sources that is essential for successful foraging. We have designed a stochastic model of ant foraging in the absence of direct communication. The motion of ants is governed by two components - a random change in direction of motion that improves ability to explore the environment, and a non-random global indirect interaction component based on pheromone signalling. Our model couples individual-based off-lattice ant simulations with an on-lattice characterisation of the pheromone diffusion. Using numerical simulations we have tested three pheromone-based model alternatives: (1) a single pheromone laid on the way toward the food source and on the way back to the nest; (2) single pheromone laid on the way toward the food source and an internal imperfect compass to navigate toward the nest; (3) two different pheromones, each used for one direction. We have studied the model behaviour in different parameter regimes and tested the ability of our simulated ants to form trails and adapt to environmental changes. The simulated ants behaviour reproduced the behaviours observed experimentally. Furthermore we tested two biological hypotheses on the impact of the quality of the food source on the dynamics. We found that increasing pheromone deposition for the richer food sources has a larger impact on the dynamics than elevation of the ant recruitment level for the richer food sources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Swarm Intelligence
Swarm Intelligence COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
CiteScore
5.70
自引率
11.50%
发文量
11
审稿时长
>12 weeks
期刊介绍: Swarm Intelligence is the principal peer-reviewed publication dedicated to reporting on research and developments in the multidisciplinary field of swarm intelligence. The journal publishes original research articles and occasional review articles on theoretical, experimental and/or practical aspects of swarm intelligence. All articles are published both in print and in electronic form. There are no page charges for publication. Swarm Intelligence is published quarterly. The field of swarm intelligence deals with systems composed of many individuals that coordinate using decentralized control and self-organization. In particular, it focuses on the collective behaviors that result from the local interactions of the individuals with each other and with their environment. It is a fast-growing field that encompasses the efforts of researchers in multiple disciplines, ranging from ethology and social science to operations research and computer engineering. Swarm Intelligence will report on advances in the understanding and utilization of swarm intelligence systems, that is, systems that are based on the principles of swarm intelligence. The following subjects are of particular interest to the journal: • modeling and analysis of collective biological systems such as social insect colonies, flocking vertebrates, and human crowds as well as any other swarm intelligence systems; • application of biological swarm intelligence models to real-world problems such as distributed computing, data clustering, graph partitioning, optimization and decision making; • theoretical and empirical research in ant colony optimization, particle swarm optimization, swarm robotics, and other swarm intelligence algorithms.
期刊最新文献
Resilient swarm behaviors via online evolution and behavior fusion Decentralized traffic management of autonomous drones Non-uniform magnetic fields for collective behavior of self-assembled magnetic pillars The viability of domain constrained coalition formation for robotic collectives Imprecise evidence in social learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1