生物炭作为重金属吸附剂的应用:制备、机理与展望

IF 2.6 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES International Journal of Environmental Research Pub Date : 2024-04-10 DOI:10.1007/s41742-024-00592-8
Xian Shi, Weiqing Yang, Jing Li, Zhiliang Yao
{"title":"生物炭作为重金属吸附剂的应用:制备、机理与展望","authors":"Xian Shi, Weiqing Yang, Jing Li, Zhiliang Yao","doi":"10.1007/s41742-024-00592-8","DOIUrl":null,"url":null,"abstract":"<p>With the increased activity from humans in agriculture and industry, a growing amount of waste containing heavy metals is discharged into the environment, which brings great risk to human health. Biochar, as a great absorbent for heavy metals remediation, has been extensively studied. The adsorption capability of biochar is affected by many factors, such as the species and properties of raw materials, the preparation methods (temperature, heating rate, and residence time), and functional sites introduced by the modification agent. However, how these factors determine the adsorption of heavy metals on biochar is not clear. The present work thoroughly reviewed the traditionally used methods for biochar preparation such as pyrolysis, hydrothermal carbonization and gasification, meanwhile, the emerging biochar preparation techniques (retort carbonization and torrefaction) are also explored. Accordingly, the commonly used modification methods (alkali modification, acid modification, ferromagnetic modification, microbial modification, etc.) are comprehensively investigated. The adsorption kinetics and isotherms are also discussed to demonstrate the adsorption mechanism from a theoretical basis. Notably, to facilitate the large-scale biochar application in practice, a discussion focusing on the factors associated with practical utilization is provided. Consequently, the review of environmental risk and the challenge regarding biochar disposal safety, a thorough economic analysis, detailed exploration of industrial-scale implementation challenges, enhanced life cycle assessment and sustainability analysis are included, aiming to contribute a better understanding of the practical implications of engineering biochar for application in heavy metals remediation.</p>","PeriodicalId":14121,"journal":{"name":"International Journal of Environmental Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Application of Biochar as Heavy Metals Adsorbent: The Preparation, Mechanism, and Perspectives\",\"authors\":\"Xian Shi, Weiqing Yang, Jing Li, Zhiliang Yao\",\"doi\":\"10.1007/s41742-024-00592-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the increased activity from humans in agriculture and industry, a growing amount of waste containing heavy metals is discharged into the environment, which brings great risk to human health. Biochar, as a great absorbent for heavy metals remediation, has been extensively studied. The adsorption capability of biochar is affected by many factors, such as the species and properties of raw materials, the preparation methods (temperature, heating rate, and residence time), and functional sites introduced by the modification agent. However, how these factors determine the adsorption of heavy metals on biochar is not clear. The present work thoroughly reviewed the traditionally used methods for biochar preparation such as pyrolysis, hydrothermal carbonization and gasification, meanwhile, the emerging biochar preparation techniques (retort carbonization and torrefaction) are also explored. Accordingly, the commonly used modification methods (alkali modification, acid modification, ferromagnetic modification, microbial modification, etc.) are comprehensively investigated. The adsorption kinetics and isotherms are also discussed to demonstrate the adsorption mechanism from a theoretical basis. Notably, to facilitate the large-scale biochar application in practice, a discussion focusing on the factors associated with practical utilization is provided. Consequently, the review of environmental risk and the challenge regarding biochar disposal safety, a thorough economic analysis, detailed exploration of industrial-scale implementation challenges, enhanced life cycle assessment and sustainability analysis are included, aiming to contribute a better understanding of the practical implications of engineering biochar for application in heavy metals remediation.</p>\",\"PeriodicalId\":14121,\"journal\":{\"name\":\"International Journal of Environmental Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s41742-024-00592-8\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s41742-024-00592-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

随着人类工农业活动的增加,越来越多含有重金属的废物被排放到环境中,给人类健康带来了巨大风险。生物炭作为一种很好的重金属修复吸附剂,已被广泛研究。生物炭的吸附能力受多种因素的影响,如原材料的种类和性质、制备方法(温度、加热速率和停留时间)以及改性剂引入的功能位点。然而,这些因素如何决定生物炭对重金属的吸附尚不清楚。本研究对热解、水热碳化和气化等传统的生物炭制备方法进行了深入探讨,同时也对新兴的生物炭制备技术(甑式碳化和热解)进行了探讨。此外,还全面研究了常用的改性方法(碱改性、酸改性、铁磁改性、微生物改性等)。此外,还讨论了吸附动力学和等温线,从理论上论证了吸附机理。值得注意的是,为了促进生物炭在实践中的大规模应用,重点讨论了与实际利用相关的因素。因此,该研究包括对环境风险和生物炭处置安全挑战的审查、全面的经济分析、对工业规模实施挑战的详细探讨、强化生命周期评估和可持续性分析,旨在帮助人们更好地理解工程生物炭应用于重金属修复的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Application of Biochar as Heavy Metals Adsorbent: The Preparation, Mechanism, and Perspectives

With the increased activity from humans in agriculture and industry, a growing amount of waste containing heavy metals is discharged into the environment, which brings great risk to human health. Biochar, as a great absorbent for heavy metals remediation, has been extensively studied. The adsorption capability of biochar is affected by many factors, such as the species and properties of raw materials, the preparation methods (temperature, heating rate, and residence time), and functional sites introduced by the modification agent. However, how these factors determine the adsorption of heavy metals on biochar is not clear. The present work thoroughly reviewed the traditionally used methods for biochar preparation such as pyrolysis, hydrothermal carbonization and gasification, meanwhile, the emerging biochar preparation techniques (retort carbonization and torrefaction) are also explored. Accordingly, the commonly used modification methods (alkali modification, acid modification, ferromagnetic modification, microbial modification, etc.) are comprehensively investigated. The adsorption kinetics and isotherms are also discussed to demonstrate the adsorption mechanism from a theoretical basis. Notably, to facilitate the large-scale biochar application in practice, a discussion focusing on the factors associated with practical utilization is provided. Consequently, the review of environmental risk and the challenge regarding biochar disposal safety, a thorough economic analysis, detailed exploration of industrial-scale implementation challenges, enhanced life cycle assessment and sustainability analysis are included, aiming to contribute a better understanding of the practical implications of engineering biochar for application in heavy metals remediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
104
审稿时长
1.7 months
期刊介绍: International Journal of Environmental Research is a multidisciplinary journal concerned with all aspects of environment. In pursuit of these, environmentalist disciplines are invited to contribute their knowledge and experience. International Journal of Environmental Research publishes original research papers, research notes and reviews across the broad field of environment. These include but are not limited to environmental science, environmental engineering, environmental management and planning and environmental design, urban and regional landscape design and natural disaster management. Thus high quality research papers or reviews dealing with any aspect of environment are welcomed. Papers may be theoretical, interpretative or experimental.
期刊最新文献
Air Quality Variations and Influence of COVID‑19 Lockdown Restrictions on it in Tabriz, Iran Efficient Degradation of Bezafibrate Using the Fe(II)/Sulfite Process: Kinetics, Mechanism and Influence on DBP Formation Heavy Metals Analysis in the Vicinity of a Northcentral Nigeria Major Scrap-Iron Smelting Plant Modification of Nanofiltration Membranes by Cationic Surfactant as a Promising Strategy for Treatment of Pharmaceutical Wastewater Noise Mapping and Impact of COVID-19 Lock Down on Traffic Noise Induced Health Issues Using SEM Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1