Hee Sun Shin, Geun Hwa Park, Eun Sil Choi, So Young Park, Da Sol Kim, Jaerak Chang, Ji Man Hong
{"title":"RNF213变体和自噬功能障碍:莫亚莫亚病内皮功能障碍的关键环节","authors":"Hee Sun Shin, Geun Hwa Park, Eun Sil Choi, So Young Park, Da Sol Kim, Jaerak Chang, Ji Man Hong","doi":"10.1177/0271678x241245557","DOIUrl":null,"url":null,"abstract":"Moyamoya disease (MMD) is closely associated with the Ring Finger Protein 213 ( RNF213), a susceptibility gene for MMD. However, its biological function remains unclear. We aimed to elucidate the role of RNF213 in the damage incurred by human endothelial cells under oxygen-glucose deprivation (OGD). We analyzed autophagy in peripheral blood mononuclear cells (PBMCs) derived from patients carrying either RNF213 wildtype (WT) or variant (p.R4810K). Subsequently, human umbilical vein endothelial cells (HUVECs) were transfected with RNF213 WT (HUVEC<jats:sup>WT</jats:sup>) or p.R4810K (HUVEC<jats:sup>R4810K</jats:sup>) and exposed to OGD for 2 h. Immunoblotting was used to analyze autophagy marker proteins, and endothelial function was analyzed by tube formation assay. Autophagic vesicles were observed using transmission electron microscopy. Post-OGD exposure, we administered rapamycin and cilostazol as potential autophagy inducers. The RNF213 variant group during post-OGD exposure (vs. pre-OGD) showed autophagy inhibition, increased protein expression of SQSTM1/p62 ( p < 0.0001) and LC3-II ( p = 0.0039), and impaired endothelial function ( p = 0.0252). HUVEC<jats:sup>R4810K</jats:sup> during post-OGD exposure (versus pre-OGD) showed a remarkable increase in autophagic vesicles. Administration of rapamycin and cilostazol notably restored the function of HUVEC<jats:sup>R4810K</jats:sup> and autophagy. Our findings support the pivotal role of autophagy impaired by the RNF213 variant in MMD-induced endothelial cell dysfunction.","PeriodicalId":15356,"journal":{"name":"Journal of Cerebral Blood Flow & Metabolism","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNF213 variant and autophagic impairment: A pivotal link to endothelial dysfunction in moyamoya disease\",\"authors\":\"Hee Sun Shin, Geun Hwa Park, Eun Sil Choi, So Young Park, Da Sol Kim, Jaerak Chang, Ji Man Hong\",\"doi\":\"10.1177/0271678x241245557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moyamoya disease (MMD) is closely associated with the Ring Finger Protein 213 ( RNF213), a susceptibility gene for MMD. However, its biological function remains unclear. We aimed to elucidate the role of RNF213 in the damage incurred by human endothelial cells under oxygen-glucose deprivation (OGD). We analyzed autophagy in peripheral blood mononuclear cells (PBMCs) derived from patients carrying either RNF213 wildtype (WT) or variant (p.R4810K). Subsequently, human umbilical vein endothelial cells (HUVECs) were transfected with RNF213 WT (HUVEC<jats:sup>WT</jats:sup>) or p.R4810K (HUVEC<jats:sup>R4810K</jats:sup>) and exposed to OGD for 2 h. Immunoblotting was used to analyze autophagy marker proteins, and endothelial function was analyzed by tube formation assay. Autophagic vesicles were observed using transmission electron microscopy. Post-OGD exposure, we administered rapamycin and cilostazol as potential autophagy inducers. The RNF213 variant group during post-OGD exposure (vs. pre-OGD) showed autophagy inhibition, increased protein expression of SQSTM1/p62 ( p < 0.0001) and LC3-II ( p = 0.0039), and impaired endothelial function ( p = 0.0252). HUVEC<jats:sup>R4810K</jats:sup> during post-OGD exposure (versus pre-OGD) showed a remarkable increase in autophagic vesicles. Administration of rapamycin and cilostazol notably restored the function of HUVEC<jats:sup>R4810K</jats:sup> and autophagy. Our findings support the pivotal role of autophagy impaired by the RNF213 variant in MMD-induced endothelial cell dysfunction.\",\"PeriodicalId\":15356,\"journal\":{\"name\":\"Journal of Cerebral Blood Flow & Metabolism\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cerebral Blood Flow & Metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0271678x241245557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow & Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0271678x241245557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RNF213 variant and autophagic impairment: A pivotal link to endothelial dysfunction in moyamoya disease
Moyamoya disease (MMD) is closely associated with the Ring Finger Protein 213 ( RNF213), a susceptibility gene for MMD. However, its biological function remains unclear. We aimed to elucidate the role of RNF213 in the damage incurred by human endothelial cells under oxygen-glucose deprivation (OGD). We analyzed autophagy in peripheral blood mononuclear cells (PBMCs) derived from patients carrying either RNF213 wildtype (WT) or variant (p.R4810K). Subsequently, human umbilical vein endothelial cells (HUVECs) were transfected with RNF213 WT (HUVECWT) or p.R4810K (HUVECR4810K) and exposed to OGD for 2 h. Immunoblotting was used to analyze autophagy marker proteins, and endothelial function was analyzed by tube formation assay. Autophagic vesicles were observed using transmission electron microscopy. Post-OGD exposure, we administered rapamycin and cilostazol as potential autophagy inducers. The RNF213 variant group during post-OGD exposure (vs. pre-OGD) showed autophagy inhibition, increased protein expression of SQSTM1/p62 ( p < 0.0001) and LC3-II ( p = 0.0039), and impaired endothelial function ( p = 0.0252). HUVECR4810K during post-OGD exposure (versus pre-OGD) showed a remarkable increase in autophagic vesicles. Administration of rapamycin and cilostazol notably restored the function of HUVECR4810K and autophagy. Our findings support the pivotal role of autophagy impaired by the RNF213 variant in MMD-induced endothelial cell dysfunction.