Willian F. Reis, Marcos E. S. Silva, Ana C. S. Gondim, Renato C. F. Torres, Rômulo F. Carneiro, Celso S. Nagano, Alexandre H. Sampaio, Claudener S. Teixeira, Lenita C. B. F. Gomes, Bruno L. Sousa, Alexandre L. Andrade, Edson H. Teixeira, Mayron A. Vasconcelos
{"title":"与葡萄糖结合的双色 Dioclea Lectin (DBL):纯化、表征、结构分析和抗菌特性","authors":"Willian F. Reis, Marcos E. S. Silva, Ana C. S. Gondim, Renato C. F. Torres, Rômulo F. Carneiro, Celso S. Nagano, Alexandre H. Sampaio, Claudener S. Teixeira, Lenita C. B. F. Gomes, Bruno L. Sousa, Alexandre L. Andrade, Edson H. Teixeira, Mayron A. Vasconcelos","doi":"10.1007/s10930-024-10199-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we purified a lectin isolated from the seeds of <i>Dioclea bicolor</i> (DBL) via affinity purification. Electrophoresis analysis revealed that DBL had three bands, α, β, and γ chains, with molecular masses of approximately 29, 14, and 12 kDa, respectively. Gel filtration chromatography revealed that the native form of DBL had a molecular mass of approximately 100 kDa, indicating that it is a tetramer. Interestingly, DBL-induced hemagglutination was inhibited by several glucosides, mannosides, ampicillin, and tetracycline with minimum inhibitory concentration (MIC) values of 1.56–50 mM. Analysis of the complete amino acid sequence of DBL revealed the presence of 237 amino acids with high similarity to other <i>Diocleinae</i> lectins. Circular dichroism showed the prominent β-sheet secondary structure of DBL. Furthermore, DBL structure prediction revealed a Discrete Optimized Protein Energy (DOPE) score of –26,642.69141/Normalized DOPE score of –1.84041. The DBL monomer was found to consist a β-sandwich based on its 3D structure. Molecular docking showed the interactions between DBL and α-D-glucose, N-acetyl-D-glucosamine, α-D-mannose, α-methyl-D-mannoside, ampicillin, and tetracycline. In addition, DBL showed antimicrobial activity with an MIC of 125 μg/mL and exerted synergistic effects in combination with ampicillin and tetracycline (fractional inhibitory concentration index ≤ 0.5). Additionally, DBL significantly inhibited biofilm formation and showed no toxicity in murine fibroblasts (<i>p</i> < 0.05). These results suggest that DBL exhibits antimicrobial activity and works synergistically with antibiotics.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 3","pages":"559 - 576"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glucose-Binding Dioclea bicolor Lectin (DBL): Purification, Characterization, Structural Analysis, and Antibacterial Properties\",\"authors\":\"Willian F. Reis, Marcos E. S. Silva, Ana C. S. Gondim, Renato C. F. Torres, Rômulo F. Carneiro, Celso S. Nagano, Alexandre H. Sampaio, Claudener S. Teixeira, Lenita C. B. F. Gomes, Bruno L. Sousa, Alexandre L. Andrade, Edson H. Teixeira, Mayron A. Vasconcelos\",\"doi\":\"10.1007/s10930-024-10199-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we purified a lectin isolated from the seeds of <i>Dioclea bicolor</i> (DBL) via affinity purification. Electrophoresis analysis revealed that DBL had three bands, α, β, and γ chains, with molecular masses of approximately 29, 14, and 12 kDa, respectively. Gel filtration chromatography revealed that the native form of DBL had a molecular mass of approximately 100 kDa, indicating that it is a tetramer. Interestingly, DBL-induced hemagglutination was inhibited by several glucosides, mannosides, ampicillin, and tetracycline with minimum inhibitory concentration (MIC) values of 1.56–50 mM. Analysis of the complete amino acid sequence of DBL revealed the presence of 237 amino acids with high similarity to other <i>Diocleinae</i> lectins. Circular dichroism showed the prominent β-sheet secondary structure of DBL. Furthermore, DBL structure prediction revealed a Discrete Optimized Protein Energy (DOPE) score of –26,642.69141/Normalized DOPE score of –1.84041. The DBL monomer was found to consist a β-sandwich based on its 3D structure. Molecular docking showed the interactions between DBL and α-D-glucose, N-acetyl-D-glucosamine, α-D-mannose, α-methyl-D-mannoside, ampicillin, and tetracycline. In addition, DBL showed antimicrobial activity with an MIC of 125 μg/mL and exerted synergistic effects in combination with ampicillin and tetracycline (fractional inhibitory concentration index ≤ 0.5). Additionally, DBL significantly inhibited biofilm formation and showed no toxicity in murine fibroblasts (<i>p</i> < 0.05). These results suggest that DBL exhibits antimicrobial activity and works synergistically with antibiotics.</p></div>\",\"PeriodicalId\":793,\"journal\":{\"name\":\"The Protein Journal\",\"volume\":\"43 3\",\"pages\":\"559 - 576\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Protein Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10930-024-10199-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Protein Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s10930-024-10199-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
In this study, we purified a lectin isolated from the seeds of Dioclea bicolor (DBL) via affinity purification. Electrophoresis analysis revealed that DBL had three bands, α, β, and γ chains, with molecular masses of approximately 29, 14, and 12 kDa, respectively. Gel filtration chromatography revealed that the native form of DBL had a molecular mass of approximately 100 kDa, indicating that it is a tetramer. Interestingly, DBL-induced hemagglutination was inhibited by several glucosides, mannosides, ampicillin, and tetracycline with minimum inhibitory concentration (MIC) values of 1.56–50 mM. Analysis of the complete amino acid sequence of DBL revealed the presence of 237 amino acids with high similarity to other Diocleinae lectins. Circular dichroism showed the prominent β-sheet secondary structure of DBL. Furthermore, DBL structure prediction revealed a Discrete Optimized Protein Energy (DOPE) score of –26,642.69141/Normalized DOPE score of –1.84041. The DBL monomer was found to consist a β-sandwich based on its 3D structure. Molecular docking showed the interactions between DBL and α-D-glucose, N-acetyl-D-glucosamine, α-D-mannose, α-methyl-D-mannoside, ampicillin, and tetracycline. In addition, DBL showed antimicrobial activity with an MIC of 125 μg/mL and exerted synergistic effects in combination with ampicillin and tetracycline (fractional inhibitory concentration index ≤ 0.5). Additionally, DBL significantly inhibited biofilm formation and showed no toxicity in murine fibroblasts (p < 0.05). These results suggest that DBL exhibits antimicrobial activity and works synergistically with antibiotics.
期刊介绍:
The Protein Journal (formerly the Journal of Protein Chemistry) publishes original research work on all aspects of proteins and peptides. These include studies concerned with covalent or three-dimensional structure determination (X-ray, NMR, cryoEM, EPR/ESR, optical methods, etc.), computational aspects of protein structure and function, protein folding and misfolding, assembly, genetics, evolution, proteomics, molecular biology, protein engineering, protein nanotechnology, protein purification and analysis and peptide synthesis, as well as the elucidation and interpretation of the molecular bases of biological activities of proteins and peptides. We accept original research papers, reviews, mini-reviews, hypotheses, opinion papers, and letters to the editor.