Ying-li Zhang, Xiang-ji Yue, Fan Yang, Jia-nan Ding, Jia-hua Hong, De-chun Ba
{"title":"基于 CFD 的涡旋式压缩机瞬态流动和热力学分析","authors":"Ying-li Zhang, Xiang-ji Yue, Fan Yang, Jia-nan Ding, Jia-hua Hong, De-chun Ba","doi":"10.1177/09576509241242907","DOIUrl":null,"url":null,"abstract":"The scroll compressor is a kind of positive-displacement compressor applied in refrigeration systems, heat pump systems, and air conditioner systems. Using the spring smoothing method and considering the heat transfer, the numerical simulation model of the scroll compressor is established under standard working conditions. The results show that the CFD model is well validated by the experiment result. The compressor performance and the working process are analyzed. The pre-compression and the over-compression phenomenon are also studied. Moreover, the temperature distribution and velocity distribution of gas flow in the compressor are illustrated. The result shows that the pre-compression can improve the performance of the scroll compressor and the optimization of the suction channel geometry can provide a smoother suction process. Under the combined effect of the pre-compression and heat transfer, the refrigerating capacity is increased by approximately 0.54 kW and the volume efficiency is increased by approximately 2.2%. The additional power loss due to over-compression is 47.6615 W, and the setting of over-compression discharges can reduce the pressure and power loss. This study is helpful to the performance prediction and the structural optimization of the scroll compressor.","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":"50 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient flow and thermodynamics analysis of a scroll compressor based on CFD\",\"authors\":\"Ying-li Zhang, Xiang-ji Yue, Fan Yang, Jia-nan Ding, Jia-hua Hong, De-chun Ba\",\"doi\":\"10.1177/09576509241242907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scroll compressor is a kind of positive-displacement compressor applied in refrigeration systems, heat pump systems, and air conditioner systems. Using the spring smoothing method and considering the heat transfer, the numerical simulation model of the scroll compressor is established under standard working conditions. The results show that the CFD model is well validated by the experiment result. The compressor performance and the working process are analyzed. The pre-compression and the over-compression phenomenon are also studied. Moreover, the temperature distribution and velocity distribution of gas flow in the compressor are illustrated. The result shows that the pre-compression can improve the performance of the scroll compressor and the optimization of the suction channel geometry can provide a smoother suction process. Under the combined effect of the pre-compression and heat transfer, the refrigerating capacity is increased by approximately 0.54 kW and the volume efficiency is increased by approximately 2.2%. The additional power loss due to over-compression is 47.6615 W, and the setting of over-compression discharges can reduce the pressure and power loss. This study is helpful to the performance prediction and the structural optimization of the scroll compressor.\",\"PeriodicalId\":20705,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09576509241242907\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09576509241242907","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Transient flow and thermodynamics analysis of a scroll compressor based on CFD
The scroll compressor is a kind of positive-displacement compressor applied in refrigeration systems, heat pump systems, and air conditioner systems. Using the spring smoothing method and considering the heat transfer, the numerical simulation model of the scroll compressor is established under standard working conditions. The results show that the CFD model is well validated by the experiment result. The compressor performance and the working process are analyzed. The pre-compression and the over-compression phenomenon are also studied. Moreover, the temperature distribution and velocity distribution of gas flow in the compressor are illustrated. The result shows that the pre-compression can improve the performance of the scroll compressor and the optimization of the suction channel geometry can provide a smoother suction process. Under the combined effect of the pre-compression and heat transfer, the refrigerating capacity is increased by approximately 0.54 kW and the volume efficiency is increased by approximately 2.2%. The additional power loss due to over-compression is 47.6615 W, and the setting of over-compression discharges can reduce the pressure and power loss. This study is helpful to the performance prediction and the structural optimization of the scroll compressor.
期刊介绍:
The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.